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ABSTRACT

This thesis presents and evaluates variants of the ellipsoid

algorithm for nonlinear programming. Two primary types of variants

are examined: different deep cut hyperplanes, and different

strategies for testing the feasibility constraints. Five of the

deep cut variants do not require a linesearch, while three do

require a linesearch. Of the five constraint examination methods,

three are alternative ways of examining the full list of

feasibility constraints. The fourth method is an active set

strategy, while the fifth uses a record objective function value

constraint. The variants are tested on 13 general and geometric

programming problems, both convex and nonconvex. The performance

of each variant is measured in combined solution error as a

function of solution time. The experimental results show that the

lowest solution error achieved is essentially unaffected by the

constraint examination strategy. However, all but one of the deep

cut variants occasionally converge to non-optimal points if the

problem is nonconvex. Three of the deep cuts and three of the
/

constraint examinatign strategies are shown to improve the

efficiency of the algorithm. The most efficient variant was the

active set strategy, which attained almost all of the efficiency

improvement that is theoretically possible for any active set

strategy.
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PART 1

INTRODUCTION AND HISTORICAL REVIEW

In [11], Shot describes a simple method for solving convex

programming problems, which has since become known as the ellipsoid

algorithm (EA). In [6] and elsewhere, Ecker and Kupferschmid show

that the EA can be practically applied to both convex and nonconvex

nonlinear programming problems, and that it is more robust than

some other methods in common use. On many problems the EA is also

competitive with other methods in terms of efficiency, for at least

some levels of solution error.

Consider the nonlinear programming problem

NLP: min f (x)
m+1

x E Rn

subject to x E S = (x I f.(x) < 0, i = 1 ...m).
IC

Assume that there exists an optimal point x solving the

problem NLP, that an initial n-dimensional ellipsoid E0 can be

found with x E EO, and that the intersection of E0 with the

feasible region S has computationally positive volume relative to

Rn . The EA generates a sequence of successively smaller ellipsoids

Sk (xl (x - xk)TQl(x - xk) . 1)

- . . . -
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each containing x . We use only rank 1 updates, although there are

rank 2 updates as well [5]. Given an ellipsoid E in this
k

sequence, a cut hyverplane .4

H k ( (x -(gC)T (x - xk)  0)

c
is constructed passing through a cut point x with cut gradient

g We define one of its half-spaces

+= x I -(gc)T(x - xk 0

as the cut halfspace. We can construct cuts which, assuming

convexity of f1... fm+l ensure that the intersection of Hk  with E
s +

contains x We call a cut a deen cut if H contains less than
k

half of E The construction of such cuts, and their affect on EA

convergence, is presented in Part 3.

k+l adte-
Given the hyperplane Hk, the center x of Ek+l and the

positive definite matrix +1used in defining are determined

by the simple update formulae

k+1 k c
x x +ad and

Qk+l = b(Qk cd(dc))

where

7.



3
d€0= --Qkgc/(( O)Tok( c))1/2 ,

a = (1 + na)/(n + 1),

and, for n > 1, b = 2(1 - a2)/(n2 - 1)

and a = 2a/(1 + a).

The depth o cut, a, is calculated as

a . = (3c)T k c C /((gO)T% gC) /2

Geometrically, d is a vector from the center of E to a point on
kc k c

the ellipsoid boundary y (yC =x + dc) such that y is the

minimizing point of the problem

c T
Min (s)x, x E Ek

The parameter a is the ratio of the distance along d from thec

centerpoint to Lk , divided by the length of d
€. The convergence of

the EA depends on the depth of cut, since the ratio of consecutive

ellipsid volumes (see Bland, Goldfarb, and Todd [1]) is

((n2( - a2 ))/(n 2 - ((n -)/2)(nl -)/(n + M

This ratio is less than one for -(1/n) < a ( 1.

Previous research ([12]) suggested that normalizing the

gradients increased the stability of the algorithm. We represent

the normalized gradient as gi(x) = Vf (x)/IIvfi(x)I . For

i "- --. -
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4

efficiency we use the infinity norm, so that the element of g

largest in absolute value has absolute value 1.

The cut point and cut gradient are selected after determining

which function fl...f m+ is to be used when constructing Hk. Part

4 of this thesis will examine five strategies for determining

this function. Unless otherwise mentioned, our method is to first

kexamine the m feasibility constraints, to determine whether x E S.

If x E S', then a function f. has been found with f. > 0, and that1 1

function is used when constructing "k . If xk E S, then fm+1 is

used when constructing Hk.

k-

To determine if x E S in the above process, we select an

examination order for the m feasibility constraints. Unless

otherwise specified, we use the cyclical ordering of 4.1.2.

k k
In the EA implemented, if x E S'we evaluate f (x ) to keep

m+1

a record of the best feasible point found so far. This best point

r is called the record point, and the corresponding objective

function value fr = f (xr) is called the record value. Until a

record point is found, we let f = + . We also define

G = (x f+ (x) fr. G is the lowest objective function level

* set known to contain x , and G changes whenever a new record point

is found. Thus, S n G contains all feasible points with objective

r
function values at or below f Therefore x E (S n G), and if a



record point xr has been found then xr E (S F G). The limit point

of the sequence of record points 1 rs the optimal point x . We

call S n G the solution-cofljinng IL for NLP.

When fm+i is used in constructing Hk' we call the resulting

cut an optimality cut; otherwise, the cut is a feasibility cut. We

refer to the point x as a Phase 1 point or a Phase 2 point, and to

iteration k as a Phase 1 iteration or a Phase 2 iteration, based on
"'"k k

whether x E S' or x E S. At each iteration, by the time that we

know which function will be used for "k . and before we must

c c
determine x and g , the constraint selection strategy above will

k
have classified x as being in S', or in S n G', or in S n G.

The ellipsoid update formulae presented above ensure that
.C

( B) C Ek+l. To ensure that x E Ek+lD we must select cuts

with certain properties. For each i = 1.. .m, let

S. f fi Ix f.(x) < 0)1 1

be the feasible region for the constraint f.(x) < 0.

Consider a set C C fn  a subset of which may be contained in

Ek. If the cut hyperplane Hk is constructed so that C C H, then

(C Bk) C Ek+i because (H O )C E We say such a cut
k k+1k k kl

..... unea the set C.

i°-4
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k
The EA described above uses a feasibility cut if x E S', and

k
an optimality cut if x E S. If fl' f m+1 are convex then these

cuts preserve x and we term these cuts solution,-preservint. A

feasibility cut on the (violated) i-th constraint is

+
solution-preserving if S.C H because then

S S
x E S c S i  z H k '

An optimality cut is also solution-preserving if G C Hk because

then

x E (S fG) C G C .

Thus, our various feasibility cuts should preserve S. and our1

optimality cuts should preserve G to be solution-preserving.

The center cut strategy used by Shor [15] and by Ecker and

Kupferschmid [61 uses x = x k , and gc = gi(x k), where i is the

" index of the function used to create H1k These cuts can be shown

* k
to be solution-preserving by use of the support inequality at x

For a feasibility cut, Hk actually supports

Li = (x I fi(x) fi(x k)),

" t~- ~ . .- --- .-
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and Si C L. since f.(x 
k )  0. For an optimality cut, Hk actually

supports

L = (x fm+l (x) * fm+1 (k))

k r
and G C L m+1 since f m+X) > f> .

All but two of the deep cut variants also select Hk to be a

support hyperplane to a level set which contains the level set

to be preserved.

For Part 3 where deep cuts are examined, we attempt to make

the deepest cut possible, to gain the greatest ellipsoid volume

reduction. It can be seen that for a center cut a = 0, and for a

deep cut a > 0. If a deep cut algorithm results in a < 0, we would

instead use the center cut above. The equation for a shows that

c ka > 0 requires that x 0 x and that the directional derivative

of f along xc - xk must be negative.

ig

Another consideration for deep cut variants is to ensure that

ca < 1 for the ellipsoid update formulae. If x E E then lal . 1;
k

otherwise, a may exceed these bounds. If a = 1 then Ek+1 consists

csolely of the point y . If a > 1 then (S n G) n E = 0, indicating

that x does not lie in E When this occurs after a record point

has been found, it is taken as evidence of numerical roundoff error



8

in the calculation of a, or that Ok is no longer positive definite.

If a variant calculates a 2 1, we make a center cut to allow the

algorithm to continue.

The progress of an EA using center cuts is illustrated

graphically, for a hypothetical problem having n = 2, in [12].

.O



PART 2

EXPERIMENTAL METHODS

24 Iut Problems

The test problems chosen for this study consist of 5 general

nonlinear problems and 8 geometric programming problems, of which 3

are convex and 10 are nonconvex. Table 2.1 summarizes the 13

problems.

Table 2.1 Test Problems: General Information

Iproblem Iconvex? un I 0

IColville l yes I 5 151
lColville 2 no 1151201
lColville 3 no 5 5 161
lColville 4 no I41 81
IColville 8 no I 3 201
Denbo lb I yes 1121 3
IDenbo 2 I no 5 S 91
IDenbo 3 I no 7 7 151
IDembo 4a I no 8 s 41
IDenboS 5 no 8 8 61
IDenbo 6 I no 1131181
IDenbo 7 I no 1161251
Denbo 8a I yes 7 7 41

For statements of the Colville problems, see [2]; for
statements of the Dembo problems, see [3]. The
constraints are indexed here the same as in 12] and [3].

Colville 8 involves functions for which analytical

9
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derivatives cannot be given, so finite differencing was
used to approximate the gradients of those functions.

The statement of Dembo 2 in [3] is imprecise and contains
some typographical errors; see [12] for a correct problem
statement.

In Dembo 3, Dembo 6, and Dembo 7, some of the constraints
are explicit bounds on variables.

In order to guarantee that each strategy solves the same

problems, the data necessary to define a particular problem is

given in a single data structure accessed by each of the

strategies.

For each test problem, we use the vectors from [2] and (3]

h 1
of upper and lower bounds x and x on the variables. The starting

point x0 is chosen as the midpoint of these bounds. The ellipsoid

algorithm requires that an initial ellipsoid E be given which
0

contains the optimal point, and we select as E the ellipsoid of

minimum volume containing

[x I x I jx .xh.

Sn

(z X<
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2.2 rormneMeasurements i
Given a test problem and a starting point, each EA variant is

allowed to run until it has obtained the best solution of which it

is capable. At each iteration, the current centerpoint x , the

k
current objective function value f m+1(x ), and the computer time

used so far are written in a file. After the experiment is over,

these performance measurements are used to analyze the behavior of

the EA variant that was used.

After Eason and Fenton, [4], we use error versus effort

curves to display the convergence trajectories of the various EA

variants. The error measure that we use here is computed as

follows. First, the combined error measure

m

e(xk) = Ifm~ k) - f (x )I + .i1f.(xk)I
m+l M+ i= 1

k
is computed for each iterate x in the solution process, where the

X are the Lagrange multipliers at optimality. These values are
i

then normalized to obtain the relative combined error measure

k k 0
E(x) = e(x )/e(x0),

0where z denotes the common starting point of the variants. The
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common logs of the E(x ) are plotted versus the measure of effort

used so far. Details regarding the calculation of the optimal

Lagrange multipliers are given in [8].

The measure of effort used for the error curves here is the

problem state central processing unit (PSCPU) time used by the EA

variant. In 2.2.2 below and in [12] and [6], complete details are

given regarding the determination of PSCPU time used by a strategy

in the solution process. In summary, we turn a timer on and off so

as to measure only the effort used in performing the steps of the

algorithm, thereby excluding from the measurements any time used

for input and output operations, for other tasks performed only as

conveniences to the experimenter, and for the performance

-J measurement process itself. Extensive experiments, see [12], have

shown that our method of measuring PSCPU time is accurate,

reproducible, and substantially uncontaminated by system-load

effects and other influences external to the experiments.

The construction of meaningful error curves using the process

? -described above requires the optimal solution to be known to

. considerably more precision than is usually reported in the

literature. We therefore use very accurate solutions x in the

construction of the error curves. These solutions are also chosen

to be strictly feasible; see [13] for exact problem statements and

the b,-st strictly feasible point known to us for each of the test
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problems used.

To summarize the information contained in the error curves, we

provide tables showing the solution accuracy and algorithm

efficiency achieved using each EA variant, for each problem. The

measure of accuracy is the common log of the smallest relative

combined solution error E(x ) attained using the variant.

As an absolute measure of efficiency, it is possible to table

the PSCPU time needed for each EA variant to reduce the solution

error to various levels. We instead report a measure of relative

efficiency that compares efficiency over all error levels

attained. This is possible when comparing variants of the ellipsoid

algorithm to one another because the error versus effort curves for

a given problem usually are qualitatively similar in appearance.

They differ primarily by a scale factor in the effort values (and

occasionally in the lowest level of solution error attained).

Figures 2.1 and 2.2 are included here to demonstrate this

similarity in shape, and the derivation of our measure of relative

efficiency.

-4

Thus, on a given problem, the times required by two EA

variants to attain each error level are in roughly a constant

ratio. We model the times as t.b = st'a' where t is the time

required by variant Q to reach error level j. The effort scale

*1
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factor s measures the efficiency of variant B relative to A on that

problem, where lower numerical values of s are superior.

For example, on Figure 2.1 EA variant A required 6.71 seconds

-8
of PSCPU effort to attain a log solution error of 10 , while EA

variant B required only 4.65 seconds to attain the same error

level. That is, if this level of solution error is level j = 1

then t = Stl where the efficiency of variant B relative to

variant A is s = (4.65/6.71) = 0.693. If error level 2 represents

-14
an error of 10 , then t = st2a where s = (8.85/12.68) = 0.698.

To calculate our single measure of relative efficiency, we

first measure these efficiency scale factors at approximately 100

evenly-spaced error levels (when one variant attains lower levels

of solution error than the other, the efficiencies are only

compared for those levels they have in common). We then perform a

regression to fit the best scale factor s, which we report as the

relative efficiency of variant B with respect to variant A.
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q Error vs Effort
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cu ER Variant R
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01

ER Variant B

0.00 3.00 6.00 9.00 12.00 15.00
Total PSCPU Time (sec)

Figure 2.1 Relative Ef Ficiency
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S Error vs Effort
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ER Variant B

0.00 0.24 0.48 0.72 0.96 1.20
Total PSCPU Time (sec)

Figure 2.2 Typical Error versus Effort Curves
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Given error levels [log E(xk)]. , j = 1...J , we estimate the

relative efficiency s by the regression

I

min Ist - t 1, where I = min (U J,)
1 ja jb as'b

s R j=l
kD

We use [log E(x k)]. values of 0, -1/6, -2/6 ..... -J /6, with J theJ1 q q

largest integer such that

-J /6 < min log E(x k).

q k

For example, on Figure 2.1 variant A attained a lowest log error

level of -15.26 and variant B attained a lowest level of -16.17.

Thus J = 91 error levels from 0 to -15.17 were compared. The

best-fit value of s calculated by the regression on this problem

was 0.69.

The error versus effort curves in Figure 2.2 again demonstrate

the similarity of shape between EA variants on a given problem.

The relative efficiencies calculated for variants B and C were 0.82

and 1.03 respectively. Figure 2.2 also shows that sometimes the

curves for different variants overlap to an extent that they are

almost indistinguishable. For this reason, the order in which the

variants are labelled from top to bottom on the page corresponds to

-' the curves which are the highest to the lowest on the page (arrows

- . .- ." 
•

.. .i ...i . . r-A
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from the labels are also provided when they can be used to

eliminate confusion between nearly-overlapping curves). On Figure

2.2 the curves for variants A and C almost overlap, but variant C

is the curve which is slightly higher on the page in the -12 to -15

error range.

In each section below, the variant most similar to that

implemented in the routine EA of Kupferschmid, Nairn, and Ecker,

[10], is chosen as the standard variant A against which the other

variants are compared. The resulting regression problems are

solved using bisection (that is, EA with n = 1 and m = 0). Since

the repeatability of the PSCPU time measurements is about + 2%, we

consider relative efficiencies s in the range [.98,1.02] not to be

significant in the comparison of two variants, and s values

outside that range to be presumptive evidence for the superiority

of one variant over the other.

Note that this technique compares relative efficiency of the

EA variants during the majority of the convergence trajectory, when

k
the error log E(x ) is decreasing. Although some EA convergence

trajectories finally depart from this decrease, this does not much

affect the results of the relative efficiency technique.

In addition, this technique does not assume that the error

versus effort curves are nearly linear, even though this is often

.
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the case. When the error versus effort curves are nonlinear

(perhaps consisting of two near-linear segments), the model is

still appropriate because the variants still differ primarily by

the single scale factor along the effort values. Appendix D

contains the complete set of error versus effort figures for the

variants and problems considered.

-a

p-

*° 0
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Experimental Software

.3.1 Satistiics Colected

The experimental software was designed to collect a large

number of statistics which might yield further information about EA

behavior. Much of the information desired was easily available by

inserting counting or averaging statistics at apppropriate points

in the code path. Some primary statistics of this type that were

collected are:

1. Count of function evaluations performed.

2. Count of centerpoints xk by regions S' versus

S, and G' versus G.

3. History of functions f1 ... f used to create

4. Function values for violated constraints and

depths of cut achieved, for feasibility versus

optimality cuts.

5. Counts of successful and unsuccessful cuts, and

depths of cut achieved, for each deep cut

variant.

The information provided by these statistics was invaluable in

validating the operation of the code segments, analyzing how the

algorithm was behaving, and suggesting areas for possible

improvements. For example, item 3 above suggested that the active

set strategy of 4.2 should be investigated.

...................
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2342 Timin Subroutine

The effort measurement process devised by Kupferschmid [12]

allows the software effort expended to be categorized as being for

algorithm purposes (such as updating the ellipsoid), for

convenience purposes (such as maintaining the statistics above),

and for timer purposes (the actual calls to the timing code). The

three time categories are called TALG, TOTHER, and TREC

respectively. The timer subroutine itself is called RECORD. The

process uses a global timer on and off switch to indicate whether

or not the PSCPU time should be considered as algorithm time.

However, the process did not allow algorithm time to be separated

into categories such as time for finding a violated constraint,

calculating the cut point, updating the ellipsoid, etc. Since we

hoped to improve the efficiency of the algorithm by reducing the

effort required to perform various steps, the knowledge of the time

spent by the algorithm in these various areas was important.

Briefly, RECORD could be called for five purposes

(initialization, start, stop, update, and finish). Within RECORD,

every call included one call to the PSCPU clock counter

(4,096,000,000 counts per second). Internal to RECORD, counts were

accumulated in integer counterparts (ALGCNT,OTHCNT,RECCNT) to the

floating point time values TALG, TOTHER, and TREC.

An initialization call would initialize the storage area and
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get the current PSCPU clock count. A subsequent start call would

get the current PSCPU clock count, and accumulate the elapsed count

from the previous call into OTHCNT. Later, a stop call would get

the currrent PSCPU clock count, and accumulate the elapsed count

from the previous start call into ALGCNT. As desired, update calls

could be made to convert the cumulative PSCPU clock counts into

PSCPU times, and apply the correction factors. Finally, a finish

call could be made to signify the end of timing operations and to

calculate the final time statistics.

RECORD had five calibration factors which were used so that

the final time statistics did not include PSCPU time in the wrong

categories. The count difference between every pair of RECORD

calls had some PSCPU counts which would get reported as algorithm

or convenience counts, but really were spent within RECORD (while

RECORD was called, performed the operation it was called for, and

returned). Five different parameters were required because the

operations performed, and thus the PSCPU counts used, were

different for the various calls. Sequential or simultaneous

calibration of the five parameters was a very lengthy process; thus

adding the subcategorization capability to the existing RECORD

would be difficult.

Instead we designed a much simpler RECORD with improved

accuracy, and only a single calibration parameter. This new RECORD
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was then given the subcategorization capability. The simplicity of

the new RECORD is achieved by directly timing all variable length

code paths.

The new RECORD first calls the PSCPU clock counter, then

performs the variable code paths, and finally calls the PSCPU clock

counter a second time. Within RECORD, the code paths before the

first call to the PSCPU counter and after the call to the second

PSCPU counter are invariant. The count difference between the

second and the first PSCPU counts within a call to RECORD directly

measures the variable code path, and is added to RECCNT. The

difference between the first PSCPU count of a given RECORD call and

the second PSCPU count of the previous RECORD call is added to

either ALCNT or OTHCNT, as before. A single calibration factor

CALCNT estimates the PSCPU counts in this interval which were spent

within RECORD. This calibration factor is then added to RECCNT and

subtracted from the ALGCNT or OTHCNT that was just incremented.

In addition to reducing the calibration parameters from five

S,to one, the new version of RECORD also maintains the parameter as a

integer count rather than as a floating-point time constant.

Further, it eliminates thb necessity for initializing, updating,

and finishing calls.

The diagram below shows how the new RECORD calculates TALG,

• '4
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TOTHER, and TREC. C1 through C4 represent increasing values of the

PSCPU counter.

( A start call )( Algorithm )( A stop call
to RECORD )( steps being )( to RECORD )

( ) ( timed )( )
I(+ - ) (--) (- --- +--)-->

Cl C2 C3 C4

Notes:

On the first call to RECORD, all variables are
initialized. Assuming that the timer mechanism has not
been in use, the time before Cl is ignored.

In the time after C2 but before returning from RECORD,
C2 - C1 is added to RECCNT. TREC is updated from RECCNT.

•. After C3 and before C4, C3 - C2 is added to ALGCNT. CALCNT
is subtracted from ALGCNT, and CALCNT is added to RECCNT.
TALG is updated from ALGCNT.

After C4 but before returning from RECORD, C4 - C3 is added
to RECCNT, and TREC is updated from RECCNT.

A similar diagram explains the simple calibration process.

For the calibration, we use CALCNT = 0 so no corrections are

subtracted from ALGCNT. If we perform a a start call followed by a

stop call with no intervening operations, then C3 - C2 is reported

as ALGCNT. This value of ALGCNT represents the counts used by the

"' invariant entry and exit portions of the RECORD code. Thus, this

value of ALGCNT is the value desired for CALCNT.

o* .o

°~~."..'........................."....". .;.'- '.:,". ' ."-,• .-....... . - *" ". *" . . - - " ".
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( A start call )( A stop call
( to RECORD )( to RECORD )-''i (-4- I )(

Cl C2 C3 C4

CALCNT

Although the code steps within the entry and exit portions of

RECORD are invariant, the PSCPU counts required to execute them do

vary somewhat. We repeated the start-stop pair process many

thousands of times, at various times of day, times cf week, and so

on, to average out any variations with system system workload.

The correction value used for CALCNT was the average value of

(C3- C2) over all the replications (123500 counts, or 3.015x10 5

seconds). When this constant is used in the model and the

start-stop pair process is repeated, the ALGCNT value (the null)

should be near zero since no algorithm steps are performed between

C2 and C3. The nulls of the new RECORD were compared with the

old nulls. The results demonstrated that nulls of the new version

had the same degree of variability as the old nulls, approximately

.2 10 - 6 seconds per pair. However, the means of the new nulls were

centered at zero, while the means of the old nulls centered near

-77x10 seconds per pair.

Also, we tested the EA using the new timer on the test

problems, to see how much TALG varied. The algorithm times were

consistently within 2 percent of each other, both when runs under
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the new RECORD were compared with each other, and when runs

under the new RECORD were compared with runs under the old RECORD.

During the sequence of experiments reported here, we further

attempted to minimize the effect of extraneous factors by running

the experiments between midnight and 6 am, when the system

workload was at a minimum.

A disadvantage to using the new RECORD was that it increased

TREC for each run, and thus slightly increased the cost of each

run. TREC increased for two reasons. First, each call to RECORD

was more expensive, because the count-to-time conversion was being

done at each call. Second, in addition to the start-stop pairs of

calls already in the code, extra calls to RECORD were required to

organize the subcategorization of algorithm time.

The new RECORD explained above has the ability to accumulate

TALG in subtotals. A total of 21 bins are provided within RECORD;

20 accumulated algorithm count subtotals (ALGCNT(1)...ALGCNT(20)),

and the last accumulated OTHCNT. To use the 20 algorithm bins, a

mechanism was needed to easily change the current algorithm bin and

thus redirect the algorithm counts. Three new types of calls to

RECORD allowed both permanent and temporary bin changes. The bin

number for algorithm time can be changed only when the algorithm

timer is stopped. The new bin number specifies the bin which will

recieve future algorithm PSCPU counts. The bin number was added to
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the formal parameter list of RECORD.

For permanent changes in the desired bin number, the new bin

number can be specified either in a start call, or by using the new

set-bin call. Each of these calls causes RECORD to discard the

current algorithm bin number and start using the new number. The

difference in the calls is that the set-bin call does not turn the

algorithm timer on; this is still done only on start calls.

Sometimes only a temporary change in the bin number is

desired. This frequently happens when a routine calls a subroutine

which may need to change the bin. We wanted to avoid having the

instrumented routines remember and reset the desired bin number

after the subroutine is finished. Instead, we maintain within

RECORD a stack of bin numbers with the current bin on top. When

the subroutine is called it performs a push-bin call to RECORD.

This call first pushes the current bin number onto the stack

one level down. Then, it puts the subroutine's new bin number on

top of the stack as the current bin. Before the subroutine

exits, it performs a pop-bin call to RECORD, which bin number set

by the subroutine from the top of the stack and replaces it with

the previous bin number from below.

"°- ",- .. ". "-- -- .-..-
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The subcategories of EA steps for which algorithm time was

recorded were:

1. Function evaluations, i = 1...m

2. Function evaluations, i = m + 1

3. Selecting the order of constraint examination

4. Processing record points

5. Gradient evaluations, i = 1 ...m

6. Gradient evaluations, i =m + 1

7. Gradient normalizations

8. Calculating Hk

k9. Calculating the vc-.tor d

10. Updating xk and 0k

:

-Io

b4I



PART 3

ELLIPSOID ALGORITHM CONVERGENCE USING DEEP CUTS

3.1 Deep cuts Without a Linesearch

In this section, we describe five simple methods for

constructing a deep cut hyperplane which do not require a

linesearch to be performed. We then perform computational

experiments to determine how each of these methods affects the

accuracy and efficiency of the EA. In developing the methods, we

assume that the functions f f... are convex. The computational
1"m+l

results demonstrate the extent to which the cuts degrade algorith

accuracy and robustness on nonconvex problems.

3.1.1 Super-cuts Using Center Data

The first of these cut techniques, the super-cut, was outlined

by Shor in [17]. Given the current objective function value

f m+(x k), suppose that the current record value f satisfies
m+i1 ) f~( k

fY k k r kf m+ )= _f (x f > 0. That is, the current centerpoint x

lies outside the record value level set G. We define the super-cut

point

s k v kkk

x x (f (xk)/[ Vf+(xk) ) (x

29

i-.
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whrfv k k r
where f+l ) (x f M+l(x)- f and

where the L-2 norm is used. We construct Hk by selecting the cut

point and cut gradient to be

c k
c X k

and g 0 - gm+l(x),

s k
The suuer-cut Doint, x , is the point along -gm+1 (x) where a

k
linear approximation to f at x yields a function value equal to

m+1

that of the level set G. Using this definition and the support

inequality, it is easily shown that contains G, and thus a

super-cut is solution-preserving. This cut is one of the two deep

cuts where the cut gradient is not the gradient at the cut point.

Since the gradient at the centerpoint is used for constructing Hk ,

we call this cut the suuer-cut using center data. Note that the

super-cut point may or may not be in Ek.

For these super-cuts the depth of cut simplifies to

"v k k T k1/2
a fm+l(x )/((Vf 1 (x)Qk Vfm+1 (x

k ))

which is nonnegative. Computationally, for this super-cut there is

no need to actually calculate the super-cut point, since a and g€
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are calculated from data at the centerpoint xk
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3.1.2 Kelley-cuts Usina Center Data

k
When x E G', the super-cut of 3.1.1 creates a deep cut

" "k
7' which preserves the set G. The value f m+ (  )> 0 represents the

difference in objective function values between the centerpoint and

the level set G which is to be preserved. We can implement an

identical cut for the feasibility constraints. If the feasibility

constraint fi(x) j 0 is violated then xkis outside the associated

v k k k
feasible set S.. Here, f:x ) = f.(x ) - 0 = f.(x ) > 0 represents11 1 1

the difference in the constraint function values between the

centerpoint and the feasibility set S. which is to be preserved.1

s k
The Kellev-cu point x is the point along -g(x )where a

1
k

linear approximation to f. at x yields a function value equal to1

that of the boundary of level set S. (i.e., 0).l

s k Vf k) kx x (fV(xk)/i]V (x )gi(xk)

where the L-2 norm is used. This Kelley-cut also uses

c k

. gi(xk).

and a f (x k )/((Vfm (x k )) T  Vf 1 (x 
k )) 12

Again, there is no need to actually calculate the super-cut point,

c k
since a and g are calculated from data at the centerpoint xk . We

.-
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call such deep cuts [elley-cuts using center data. Let us refer to

the point x sin general as the surper/Kellev-cut Ront
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3.1.3 Sucer/Kelley Cuts Using Local Data

Center cuts, and super/Kelley-cuts using center data are

solution-preserving if the function f. used to create Hk  is

convex. Preliminary experiments indicated that super/Kelley cuts

on nonconvex problems occasionally caused the EA to converge to a

nonoptimum point, more often than did center cuts.

For center cuts, Hk is created using the support inequality to

a level set which contains the level set to be preserved.

Super/Kelley-cuts using center data are different in two ways,

when we consider their behavior in the nonconvex case. First, if
s

f. is nonconvex, we do not know whether x is inside or outside the
1

level set to be preserved, since we did not evaluate f.(x).1p

Second, the cut hyperplane is created using the centerpoint

gradient instead of the gradient at the cut point.

For these reasons, we considered a variant where super/Kelley

cuts are performed only if x s is outside the set to be preserved,

and where we use the gradient at the cut point instead of at the

centerpoint. We call this variant super/Kelley cuts using local

data. The algorithm is:

r
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1. Calculate x5 as above.

2. Evaluate fV(xS) and test if xs is in the level set:
1

If fV.(xS) < 0, then go to 4.
1s3. Otherwise, evaluate g.(x and test the depth of cut:

C 5

g = g(x ).

Calculate a

If a < 0, then go to 4.

Go to 5.

4. Make an alternative (center) cut:
c x€  k

c k

a =0

5. Update xk and Qk"

In step 3, we test for nonnegativity of a since even in the convex

case it is possible that the super/Kelley-cut point has a

k
positive directional derivative of f. along -g.(x In step 4.

and subsequently during this analysis, we use a center cut when the

deep cut being tested cannot support the level set with 0 < a ( 1

although other deep cuts could have been considered for use under

these circumstances.

.. i t L L A -' - -•- --- -o-
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•..4 Extended-cuts

The final deep cut which does not require a linesearch is the

extended-cut. Suppose that the algorithm has found a record point

xr and that at a subsequent iteration x E G'. Since we want to

r
create a deep cut hyperplane supporting G, and we know that x

is on the boundary of G, we choose

c r
x =x

and gC = gm+1 (xr)

For the extended-cut, Hk is thus the support hyperplane of G at the

r k r
boundary point x . Depending on the orientation of x , x , and G,

k rT r

it is possible that (x - ) gm+1 (x r ) < 0, and thus a < 0. For

this reason, when the depth of an extended-cut is found to be

negative, the extended cut is not used on that iteration. If an

extended-cut has a > 1 then x 4 Ek , which implies that Qk is

no longer numerically positive definite.

A computational saving is possible when using extended cuts.
r

If x is the current record point at which we would like to make an

c r r
extended cut, we need to know g M 5m+1 (x ). However, x became a

record point at some previous iteration when it was the ellipsoid

centerpoint. On that iteration, g (X ) was calculated for the

optimality cut. When extended cuts are being used, we store the

objective function gradients of record points, assuming that the
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storage space and effort penalty is small compared to the effort

required to reevaluate the gradient.
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3.4.4 ExPeriments and Results

The deep cuts above can be combined with each other and with

k.
center cuts in many combinations, based on which region x is known

to be in. The EA outlined in Part 1 tested xk, and classified

k
x as being in S', or in S n G, or in S n G, prior to making a

cut. Both types of super-cuts and the extended-cuts above may be

used whenever we know that xk E G'. The two types of Kelley-cuts

k k
can be used whenever we know that x E S'. If x E (S n G), we

make only center cuts.

For this preliminary analysis, we tested the five deep cuts

one at a time. This avoided the excessively large number of

experiments which would be required to examine all possible

combinations of cuts. The cut being tested was attempted every

k
iteration that x was in the appropriate region. Whenever the

cut being tested could not be used, we used a center cut

instead. Also, we used the same cut throughout the trajectory

from beginning to end, and did not attempt to determine how the

cuts' effects may vary if used only for part of the trajectory.

Table 3.1 summarizes how often the center cut BA trajectory

falls into each of the regions S', S n G,, and S n G for the 13

problems. These frequencies suggest how often certain cuts may be

used. For example, super- and extended-cuts may not be

used often on Colville 3. For most of the problems, Kelley-cuts
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can be performed dramatically more often than super- or

extended-cuts. Subsequent tables will show the percentages on

iterations on which these cuts were actually made, since how often

k k
x falls into a region may be affected by making deep cuts when x

is in that region.

Table 3.1 Test Problems: Frequency of Centerpoint Region

I problem S' SnG' SflG

Colville 1 67 23 10
Colville 2 77 21 2
Colville 3 83 4 13
Colville 4 0 89 11
Colville 8 52 35 13
Dembo lb 88 8 4
Dembo 2 83 7 10

Dembo 3 82 11 7
Dembo 4a 79 15 6
Dembo 5 76 18 6
Dembo 6 92 4 4
Dembo 7 91 7 2
Dembo 8a 74 17 9

Notes:

The entries represent the percentage of iterations during
k

which the centerpoint x was found to be in each region.

Figures D1.1 through Dl.13 of Appendix D1 are the

error-versus-effort plots for the deep cuts which may be used when

x E G', while Figures D1.14 through D1.26 are the plots for the

k
deep cuts which can be used when x E S'. The essential accuracy

and efficiency information has been extracted from those figures

. . . . . . . . ... -• . . ' , , . _i _ _ __ _ L , m . . ,t .
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and summarized in the tables below.

Table 3.2 displays the accuracies attained by the various

nonlinesearch deep cuts on the 13 test problems. The entries with

asterisks are significant in that rhese experiments converged to a

point other than x . Thus, the statistics in Tables 3.3 and 3.4

for these experiments may be suspect.

.',

%" - - - - - - -
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Table 3.2 Accuracies of Deep Cuts Without Linesearches

Cuts made in S n G' Cuts made in S' I

Super Super Kelley Kelley
I problemi Center l(center)I (local)I Extend I(center)I (local)1

Col 1 -16.83 -16.50 -16.63 -16.28 -16.88 -16.85
Col 2 -14.36 -15.14 -15.39 -14.61 -14.11 -13.99
Col 3 -15.11 -14.96 -15.22 -14.97 -14.89 -15.02
Col 4 1 -16.58 1 -3.61*1 -16.58 1 -16.58 (-16.58)1(-16.58)1
Col 8 1 -14.99 -15.85 -15.37 -15.85 -14.97 -14.99

I Dem lb -8.30 -8.93 -9.61 -8.30 -8.72 -8.96
Dem 2 -14.48 -14.40 -14.39 -14.42 -14.42 -14.43
Dem 3 -14.38 -14.41 -14.40 -14.35 -14.32 -14.28
Dem 4a -15.55 -15.49 -15.68 -15.04 -15.33 -15.71
Dem 5 -15.08 -14.74 -14.65 -14.67 -14.40 -14.42
Dem 6 -17.57 -17.52 -17.41 1 -17.54 1 -4.05*1 -3.53*
Dem 7 -13.36 -13.42 -13.35 -13.42 1 -9.05*1 -8.83*1
Dem 8a -14.64 -15.89 -14.61 -15.34 -14.66 -14.63

Notes:

Entries are lowest log relative combined solution error

level attained by the algorithm.

* represents experiments which converged to points other

than x

The entries for Kelley-cuts on Colville 4 are in

parentheses to denote that no Kelley-cuts were made because

all centerpoints were feasible. Only center cuts were

made, therefore the trajectory was identical to that of the

center cut variant in column 1.

None of the five deep cuts offered a significant increase in

accuracy relative to center cuts. Extended cuts were equivalent to

center cuts in accuracy. Using local data for super-cuts did

increase accuracy on one problem (Colville 4) where using center

data caused the algorithm to converge to a non-optimum point.

* ___. -o*~~~~.*~..~~.~&~.~~*~~~~~~t..~ A...t.~.. . a A ' . ..



42

However, using local data on Kelley cuts was not sufficient to

obtain convergence to x on Dembo 6 and Dembo 7.

9 Table 3.3 displays some important statistics collected while

conducting the experiments on these five nonlinesearch cut

variants. For example, on Colville 8 super-cuts were performed 7%

of the iterations when center data (gradients) were used. When

local data were used, super-cuts were attempted on 31% of the

iterations and passed the function value and nonnegative depth of

cut t~sts on 24% of the iterations. The depths of cut that are

displayed are only for the iterations on which the deep cuts were

successful. For the remaining iterations, a = 0.

L..".-..-.", .- --- . .". ". . ". . . . , . ..
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Table 3.3 Frequency and Depths of Deep Cuts Without Linesearches

Cuts made in S n G' Cuts made in S' I
+

Super Super Kelley Kelley I
I problemi(center)I (local) I Extended I(center)I (local) I

I Col 1 i 19 .0511 19/16 .046 1 22/ 8 .075 1 65 .0191 62/47 .021 1
Col 2 1 16 .0281 16/14 .029 1 19/ 5 .017 1 75 .0051 76/60 .005 1
Col 3 1 3 .0691 3/ 2 .071 1 3/ 3 .083 1 83 .0191 80/70 .019 1

I Col 4 1*18 .0371 71/61 .027 1 85/ 6 .032
Col 8 1 7 .0531 31/24 .090 1 32/10 .123 1 40 .0271 48/25 .084 1
Dem lb 1 6 .0341 6/ 6 .035 6/ 6.034 1 86 .0121 86/78 .012 1
Dem 2 1 4 .1261 5/ 2 .115 4/ 4 .102 1 80 .0191 80/74 .019 1
Dem 3 6 .0471 7/ 4 .049 6/ 4 .047 1 80 .0201 82/70 .021 1
Dem 4a 1 10 .0351 12/ 7 .031 10/ 7 .031 1 76 .0211 76/69 .020 1
Dem 5 1 14 .0381 15/11 .042 1 16/ 5 .031 1 73 .0161 74/64 .018 1
Dem 6 126 .0441 3/ 2 .038 1 3/ 2 .053 1*12 .0991* 1

I Dem 7 1 5 .0241 6/ 2 .028 1 6/ 3 .024 1*84 .0101*83/77 .010 1
Dem 8a 1 16 .0331 16/10 .033 1 16/ 6 .030 1 71 .0201 71/69 .019 1

Avg a : .051 .054 1 .057 1 .0181 .024 1

Notes:

The entries for super- and Kelley-cuts using center data are:
percentages of iterations on which the deep cut was made,

and average depth of cut for the deep cuts that were made.

The entries for all other cuts are:
percentages of iterations on which the deep cut was

attempted/successful,
and average depth of cut for the deep cuts that succeeded.

* denotes that the statistics may not be meaningful,
because the algorithm converged to a nonoptimal point.

.. The entries for Kelley-cuts on Colville 4 are blank. No
Kelley-cuts were made because all centerpoints were
feasible.

No entries are given for Kelley-cuts using local data on
Dembo 6 because the depths of cut almost immediately
exceeded 1.

Average depths of cut are calculated excluding Colville 4,
Dembo 6, and Dembo 7, so as to include only trajectories
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which converged to optimal points.

For super/Kelley-cuts using local data, the the frequency of

success is usually less than the frequency of attempts. For

nonconvex problems. xs may have been in the level set to be

preserved. Even on convex problems, numerical roundoff errors may

indicate that x5  is not outside the boundary. Also, on all

problems, a negative depth of cut may prevent the local gradient

from being used. For extended-cuts, the ratio of successes to

k
attempts is a function of the orientation of x and xr with respect

to G. The frequency statistics can be used to decide whether the

deep cuts were successful often enough to allow an adequate

evaluation of their effects. Some frequencies seem small,

especially those of extended-cuts. Te discuss this further after

the efficiency results are presented in Table 3.4.

The depths of cut resulting from super- and extinded-cuts are

almost three times as great as for [elley-cuts. Also, the depths

of cuts for super/Kelley cuts using loc i data appears to be

essentially the same as when center data is used. It is initially

difficult to evaluate the significance of the depth of cut values,

and we discuss this after the efficiency results are available.

Table 3.4 shows the relative efficiency of the five

nonlinesearch deep cuts. The center cut trajectory is taken as the
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standard. The second entry for example, shows that on Colville 1,

super-cuts using center gradients reached each error level in an

average of only 83% of the time that it took center cuts to reach

the same levels.

Table 3.4 Efficiencies of Deep Cuts Without Linesearches

I Cuts made in S n G' Cuts made in S'

I Super Super I Kelley Kelley
I problemi Center l(center)l (local)I Extend I(center)I (local)I
C 1 -4.0- .3 0.6 0.20-2 10
Col 1 1.00 0.83 0.96 0.82 0.92 1.03
ICol 2 I1.00 I0.87 I0.90 I0.97 I0.93 I1.02I
Col 3 1.00 1.09 1.12 1.06 0.82 1.03
Col 4 1.00 1.07* 1.18 0.99 (0.99) (0.99)
Col 8 1.00 0.87 0.93 0.90 1.01 0.99
Dem lb 1.00 0.93 0.98 0.93 0.78 1.38
Dem 2 1.00 0.91 1.02 0.97 1.06 1.36
Dem 3 1.00 0.99 1.00 0.96 0.88 1.08
Dem 4a 1.00 0.93 1.03 0.87 0.80 1.13
Dem 5 1.00 0.89 0.96 0.94 0.86 1.15
Dem 6 1.00 0.96 0.99 0.90 0.29* 0.22*
Dem 7 1.00 0.93 0.99 0.90 0.75* 1.04*
Dem 8a 1.00 0.92 1.02 0.93 0.83 1.18

Avg: 1.00 0.93 1.01 0.93 I 0.89 1.13 I

Notes:

The entries for Kelley-cuts on Colville 4 are in
parentheses since no Kelley-cuts were made because all
centerpoints were feasible. Only center cuts were made,
and the trajectory was identical to that of the center cut
variant in column 1. The efficiency values are included to
demonstrate the replicability of effort measurements with
those of the center cut variant.

.. * Super-cuts using center data on Colville 4, and both
Kelley cuts on Dembo 6 and 7 were excluded from the
efficiency averages because the optimal point was not
found.

r ":'. o -° .' -- >2 " §""" " - § k2. K> '"'". "'-*' ' . - " -. . ". . . .
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Table 3.4 shows that three of the deep cut variants definitely

improve the efficiency of the EA. It is interesting that extended-

and super-cuts (center data) achieve a relative efficiency of 0.93

while Kelley-cuts (center data) achieved a 0.89 relative

efficiency. In Table 3.3 we saw that these extended- and super-cuts

were usually used only 3% to 16% of the iterations, while these

Kelley-cuts were usually used 65% to 80% of the iterations.

Evidently, the greater depth of cut of the extended- and super-cuts

must compensate for their much lower frequency of use. Also, we

can now conclude that these frequencies of use, while low, were

high enough to affect EA convergence.

Although depths of cut such as 0.05 do not seem very great,

they are evidently large enough to noticeably speed algorithm

convergence. To view this affect in another way, we examine

Colville 1 using super-cuts (center data). An average a = .051

occurred on 21% of the iterations, while a = 0 occurred on the

other 79% of the iterations. The last record point was found at

iteration k = 1413. Using the formula for ellipsoid volume

.0 reduction with n = 5, the ratio of the super-cuts ellipsoid volume

to the center cuts ellipsoid volume after each had performed 1413

-8iterations with the appropriate depths of cut was 3.8x10

To summarize, of these five deep cuts without linesearches,
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extended-cuts appear to be the only cuts which offer an improvement

in efficiency with no degradation in accuracy.

Super/Kelley-cuts using center data offer almost uniformly

better efficiency than center cuts. However, both caused a loss of

accuracy on some nonconvex problems. These deep cuts could be used

to safely improve algorithm efficiency if the problem being solved

is known to be linear or convex.

Super/Kelley-cuts using local data (checking that x is not in

5the set to be preserved and using the gradient at x ) do not appear

to warrant further consideration. They do not improve accuracy

relative to center cuts, and their efficiency usually was worse

than center cuts.

p-.'.2
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3.2Deer Cuts Reguiring & Linesearch

k

When the centerpoint x is outside the solution-containing set

S n G, a linesearch may be used to find a deep cut point where the

support inequality will ensure that (S n G) C H. If x C S' we

perform a linesearch in a descent direction of f. to find the
1

boundary of S., where i is the index of the violated constraint.1

If xk E G' we perform a linesearch in a descent direction of f

to find the boundary of G.

We use the fv notation often here, so that our algorithms will
1

apply to both feasibility cuts and optimality cuts. The function f
1

is defined as

fi(x) for i = 1...m
f (Z) =
1 I fm+l(x) fr for i = m + 1

and represents the difference between the values of f. at a point1

x and on the boundary of the level set to be preserved by the cut.

Searching for a point on the boundary of S. or G is a search

v k
to find a solution of f (x) = 0. At the centerpoint x

i

f.(Z ) > 0. If we know that the other endpoint of the line segment
1

to be searched has fV (x) ( 0, then a zero-finding linesearch
i

vsubroutine can be used to find the solution point of f.(x) = 0.

-. .
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Otherwise, we first search the line segment to minimize fvi until we
1

find a point with fV(x) W 0 (inside the level set). Having found
1

an interior point, we perform a zero-finding linesearch to find a

point where fv(x) = 0 (on the boundary of the level set).
1

Both the minimization and the zero-finding linesearch

subroutines search a line segment

kx + ds  _a0 < a X < b O,

where X,,ao,b 0 E R

k n
and xk,d E R.

d is the direction of search, and a0 and b0 are the left and right

endpoints of the initial interval of uncertainty, in which the

minimum or the zero of the function lies. When the subroutines

terminate the search, the values a and b for the current interval

of uncertainty are returned. In addition, some of the routines

return a third value X E [a,b], which is the current estimate of

the minimizing point or the zero of the function.

The minimization subroutines terminate when either of the

*- following criteria is satisfied:

;K 1. The level set has been penetrated.

.7:
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2. The subroutine converged to a reasonable
approximation of the minimum point (convergence of
the interval of uncertainty, convergence of the
approximation point, zero directional derivative, or
maximum number of linesearch subroutine iterations),
without penetrating the level set.

When a minimization routine terminates because the level set was

kpenetrated, x + Xd is the point inside the level set. In thes

minimization subroutines, the left endpoint always has a negative

directional derivative of f. along d . The directional derivative
1 s

at the right endpoint is known or presumed to be positive. The

directional derivative at X may be positive or negative.

The zero-finding subroutines terminate when they converge to a

reasonable approximation of the boundary of the level set, using

convergence criteria similar to those in 2. above. Here,

f.(xk + ad ) < 0, f.(xk + bd ) > 0, and f.(x k + d ) may be1 S 1 S 1 S

positive or negative.

Suppose that the zero-finding subroutine has converged to the

boundary of the level set. We must select which of the two or

three points a, b, X is used to determine the deep cut point,

*% C. We need to select xc and the cut gradient g so that the cut

is solution-preserving, and also so that a . 0 for the best

ellipsoid volume convergence.

To ensure the cut is solution-preserving, we select a point on

"J



kkor outside the boundary as the cut point x. We use x + Xd sif

v k kf.(x + Id ) > 0, otherwise we use x + ad . Then, selecting1 5 5

Ssi(x € ) ensures that the solution-containing set is preserved

k xk

by the support inequality. Since both x+ Xd and + ad have a5 5

negative directional derivative of f. along d., a ) 0.

When a minimization subroutine terminates without having found

the level set to be supported, a cut point must still be selected.

kWe cut at x + ad , the left endpoint of the remaining interval of
Sv

uncertainty. However, if f. is minimized near or at xk + ad8 , then
k

the directional derivative of fT at x + ad may be almost 0.
1 s

Thus, the depth of cut may be almost 0 when the level set to be

supported is not found. The tables below provide the frequencies

with which the level set was found versus when it was not found, to

distinguish the deep cuts from the almost-center cuts.

Since we wanted to use each deep cut as often as possible, we

perform the linesearch cuts for both feasibility and optimality

deep cuts.

".- ,4-........ -......
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321Search Along d

There are several ways of selecting the vector along which the
k

linesearch is performed. Since x is outside the level set, the

linesearch should be in a descent direction of f.. The vector
1

dc = -1\gc/((gc)T c)l/

used in the update formulae gives rise to the point

c =k dcy xk + d on the ellipsoid boundary, which is the minimizing

point of the function (g C) Tx over E Similarly, the vector

dk = -kgi(xk)/((gi(xk)TOkgi(xk))l/2

k k k
can be used to find the point y = z + d on the ellipsoid

boundary which minimizes (gi(xk))Tx over Ek. The vector dk is a

descent direction of fi since Qk is positive definite, and not only

specifies a search direction, but also specifies how far to search

k
*' in that direction. We use y as the endpoint of the search, which

ensures that x E Ek  In [12], deep cuts are performed used this

search vector. The algorithm steps are:

1. Initialize for the linesearch for a minimum:

Let ds  dk

0

= 1

III,
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k
2. Search x + Xds , X E [ao,b], for a minimum of f . or

until the level set is penetrated. On convergence:
vk

2.1 If fVU + Id ) < 0 was found, go to 3.
f.(s

. 2.2 Otherwise (the level set was not found), cut at the

* "current left endpoint:
c = x + ad
x s

c = gi(lC)

stop

3. Initialize for the linesearch for a zero:

Let a = az(b - aO)I(b -

ao

bo =X

k v
4. Search x +Xds , E [ao,b 0], for a zero of fi.

s0
On convergence:

vk4.1 If f.(x + d ) ( 0,
1 5

xc. x k +cad
c
g =gx +a

.. g gilx1c )

stop

4.2 Otherwise,

xc x k + Xd
Sgc =i(Z)

stop

Notes:

In 3, the interval convergence tolerance for the zero-

finding linesearch, sez is adjusted to remain a fraction

of the original interval of uncertainty.

".-
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.Search Along -L

Another descent direction of f. that can be used as a search
I

k
direction is that of the negative gradient, -g(x). When

searching along d, the vector d gave both the direction and the

endpoint of the search. When -g is used instead, we must determine

how far along -g to search. It is difficult to determine the

k
intersection of the boundary of Ek and the ray x - Xg, X > 0.

Further, x€ E Ek is not a necessary requirement for

solution-preserving cuts. Therefore, our method selects a search

endpoint xk + bd without testing whether it is in Ek.

The endpoint of search is selected by examining points

k
x + bd with increasing values of b, until an endpoint is founds

V k
which satisfies one of two stopping criteria. If f.(x + bd ) < 0,

1 S

then the level set has been penetrated. If fv is increasing at
1

xk + bd ,. then the depth of cut is negative there, so any cut point
xx

k
of interest is to the left of x + bds . Having found the endpoint

which satisfies a stopping criterion, the algorithm uses the

minimization/zero-finding subroutines in a manner similar to when

searching along d.

We wish to select appropriate points xk + bd to examine. We

s k
use the vector d = x x which lies along -g (x represents the

5

Kelley-cut point if i l...m, or the super-cut point if

i = m + 1). If fi is linear, then the boundary of the level set to

b,1
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k
be preserved is at x + bd with b = 1. If f. is convex, then the5 1

v k
boundary cannot occur with b < 1. We first test fV(x + bd ) with

1 s

b = 1, and then with values of b that increase by a constant

multiplicative factor. When the level set is encountered or f.1

k
starts to increase, x + bd is the right endpoint of the interval

5

of uncertainty.

During this process of testing out along increasing values of

b, two other points are maintained to determine the left endpoint

of the interval of uncertainty. Let X be the value of b on the

preceding step, and a be the value of X on the preceding step.

Initially, a = X =0. When the level set is penetrated, the

boundary must be between I and b (since f.vxk + Xd ) > 0,1 5

otherwise the process would have stopped on the preceding step).

When f. starts to increase, the minimum point is between a and b.1

If the level set is penetrated, then a zero-finding subroutine

is used to find the boundary of the level set, as when searching

along d. If the process of increasing b stopped because f. was

increasing, then a minimization subroutine is used to try to find a

point where f is negative, also as when searching along d.i'.i I

Thus, the linesearch along -g differs from that along d not

-' -only in the search direction but also in that the (right) endpoint

of search is determined by a process which tests out along -g. The
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search along -g may use different left endpoints of search as well,

because of the information generated during the testing-out

process. Once both endpoints are known, the use of the

minimization and zero-finding subroutines is then similar to that

cI
of searching along d. Finally, since it may be that x c Ek we

need to test whether a < 1 before using the ellipsoid update

formulae.

The specific steps of the algorithm are:

1. Initialize to search out along -g:
s k

Let d x -x
s

j =0

a0=0
x= 0

b = 1

04

-7.
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2. Search out along -g until fv increases or becomes negative:

2.1 Start a new iteration:

j =j +1

2.2 Test the new right endpoint:

2.2.1 If fv(xk + bd ) <= fv(xk + )d ) go to 2.2.2
1 i 5

Otherwise, the function is increasing at b:

am = 8 m/(b - a)

"" = e /(b - a)

=a

b = b

go to 3
* v k2.2.2 If f.(x + bd ) > 0, go to 2.2.3

1 S
Otherwise, the level set has been penetrated:

e = / /(b -X)z
ao=
0=
o= b

go to 4

2.2.3 The function may or may not be increasing at b,

see whether another iteration is allowed:

If j < 10, go to 2.2.4

Otherwise, cut at the midpoint:

xc x k + Xd
cmge gi(x 0 )

stop

2.2.4 Prepare for a new right endpoint:

a = L

X =b
.' b = b(2)1 / 3

go to 2.1

1 7

. ,..; . ,-., ..:: .. -,..... . *. .* . . .
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k v3. Search x + Xds, X. E [a0,bo], for a minimum of f. orS ~10
until the level set is penetrated. On convergence:

3.1 If fv(xk + Xd ) < 0 was found, initialize for the
1 5
linesearch for a zero:

a= e (bo - a0 )/(b - X)

ao a

b= X

go to 4

3.2 Otherwise (the level set was not found), cut at

the current left endpoint:
c kx =x + ad

5
9c = .(xc)

stop

k
4. Search x + Xd , X E a,b O] for a zero of f.

On convergence:
v k

4.1 If f.(x + Xd ) ( 0,
c k

x x + ad
gc )

stop

4.2 Otherwise,

c . k +~x =x + Xd
gC M il c )

stop

Notes:

In 2.2.4, preliminary experiments showed that an expansion

factor of two was excessively large (penetration or

reversal usually occurred after only one expansion). The

expansion factor shown was selected so that three

expansions would be required before the interval had

doubled.
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In 2.2.1, 2.2.2, and 3.1, e m is the interval convergence

tolerance for the minimization linesearch, while e is the

interval convergence tolerance for the zero-finding

S ,linesearch subroutine. These tolerances are adjusted to

remain a fraction of the original interval of uncertainty.

S

K2

!S
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r k,

3.2.3 Search Alont x - xk

If we have a record point xr, then xr E (S n G). When

k r k
x i (S n G), a search of the line segment x - x will find the

a boundary of S. or G as desired. This is also a descent direction,
1

under convexity of f.. As when searching along d, the vector

r -k
d = x - x provides both the direction and the endpoint of

s

search. Another advantage of this search direction is that the
r kc

boundary of the level set is sure to be crossed along x - x k

whereas it need not be crossed when searching along d or -g.

However, this is the only linesearch cut where the algorithm

differs for feasibility versus optimality cuts. There are two

extra steps required for the optimality cuts, both of which are

caused by the fact that xr is known to be on the boundary of G.

First, the extended-cut of 3.1.4 is the same as the cut that
r kc

would result if a linesearch of x - x finds a boundary minimum of

v at r T
f. at x. To increase algorithm efficiency, we first perform the

1

test for this boundary minimum, and perform the extended-cut (if

possible) to avoid the linesearch.

Second, when the extended-cut is not possible, the algorithm

can not proceed directly to the zero-finding linesearch because

v r
there are two xeros of f. in the interval (the right endpoint x is1

vv
a zero of f but has positive directional derivative of fv alonga zeroof fi

4'

o$
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d). Therefore, a minimization search must be done to find a point
5

inside of G, which will be used as the right endpoint for the

zero-finding subroutine.

The steps of the algorithm are:

1. Test whether this is a feasibility or an objective cut:

1.1 If i ( m + 1, initialize for the linesearch for a zero:
et r k• "Let d =x - x

a0  0
= 0

b 0  1

go to 4.

1.2 If (xr - xk)Tg (xr) > 0, go to 2.

1.3 Otherwise,

make an extended-cut

stop

2. Initialize for the linesearch for a minimum:

Let d =x r -x k

a0 =0
" bo=1

3. Search xr + Xd X E [a0,b], for a minimum of fv or
s 01

until the level set is penetrated. On convergence:

3.1 If fi(xk + d ) < 0 was found, initialize for the

* linesearch for a zero:

e = (b- a 0 )/(b - a)
0 -a0

a b0 =

go to 4.

3.2 Otherwise (the level set was not found), cut at

the current left endpoint:

* '
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x c xk + ad
Cs

stop

4. Search x + )d,# [a. o E for a zero of fvi

On convergence:

4.1 If f.v(x k+ Xd )< 0,
1 k

= x + ad

gc 9 g1 x )

stop

4.2 Otherwise,

C C
g = g(x)

stop
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. Selecting Linesearch Subroutine and Tolerances

The three methods of constructing the linesearch interval

above form the basis for the EA variants we consider in this

section. However, before testing the three linesearch directions

themselves, ue must determine how the minimization and

zero-finding portion of each search is to be performed.

There are two decisions to be made. First, which of the possible

subroutines for minimization and zero-finding should be used.

Second, for each, what convergence tolerance should be used (i.e.,

how close to the boundary to attempt to get).

Our approach was to select one search direction to use while

testing the various subroutine/tolerance combinations. The vector

d was chosen for this testing. Then we would investigate each of

the possible subroutines at several tolerances. The

subroutine/tolerance combination which had the highest efficiency

would subsequently be used in the primary experiments comparing the

three search directions.

There are two linesearch minimization subroutines which we

investigated. The first is [upferschmid's implementation of

Muller's method [12] which uses both gradient and function

evaluations during the minimization process. This subroutine was

used when EA deep cuts along d were examined in (12]. Those

preliminary results indicated that deep cuts using Muller's method

.1
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did not result in increased efficiency. Therefore, part of this

analysis was to see how simpler linesearch subroutines would

compare with more complicated ones. For this reason, the second

, minimization subroutine investigated was a modified golden section

method which uses function evaluations only. When used by our

three deep cut linesearch algorithms, the function values at the

left and right endpoints of the interval of uncertainty are often

known. The primary modification was to use this knowledge to aid in

positioning the interior points (only one interior point is used

while the endpoints and the interior point have monotonically

decreasing function values).

There are three linesearch zero-finding subroutines which we

investigated, all of which use only function evaluations. The

first is Muller's method [12]. The second is the bisection

method. The third method is an adaptive hybrid of the regula falsi

and bisection methods. This hybrid performs like regula falsi if

the interval of uncertainty is decreasing well, but adapts to

perform more like bisection when the interval of uncertainty is not

decreasing well. The hybrid method is explained in Appendix A.

We also needed to decide which convergence tolerances to use

4 -for the interval of uncertainty in the minimization and in the

zero-finding subroutines. For this analysis, we selected

tolerances of 0.1, 0.01, and 0.001 of the length of ds. We did not
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require the tolerances for the minimization subroutine to be

identical to that of the zero-finding subroutine. These tolerances

also affect the other convergence criteria mentioned in 3.2. Since

Muller's method sometimes rapidly finds the neighborhood of the

minimizing/zero point, but is then slow to reduce the interval of

uncertainty, we exit the subroutine when the approximations to the

minimum/zero are unchanging within the same interval tolerance.

Finally, we set the maximum number of iterations for the subroutine

to be the number of iterations that a bisection method would

require for the same interval convergence tolerance. Subroutine

termination due to reaching the maximum iteration limit seemed to

occur only at the looser convergence tolerances.

Preliminary results demonstrated that the 13 test problems

varied greatly in how often each of the two (minimization and

zezo-finding) subroutines was utilized. For the purpose of

deciding which the best subroutines and tolerances are, we selected

test problems which would repeatedly exercise both the minimization

and the zero-finding subroutines. This allowed a more rigorous

test of the subroutines (with a decrease in the number of

experiments required).

To determine how frequently each test problem uses the

minimization and the zero-finding subroutines, we ran the search

along d method using Muller's subroutines for minimization and
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zero-finding with 0.01 convergence tolerances for each

subroutine. Table 3.5 shows the percentage of iterations, from the

first iteration through the final record iteration, on which each

subroutine was used separately or together. The entries of 0 for
k

minimization subroutine usage mean that every time y was

calculated, it was found to be inside the level set, so the

algorithm proceeded directly to the zero-finding routine.

Table 3.5 Frequency of Linesearch Subroutine Usages by Problem

problem m min zero

Colville 1 + 17 82
Colville 2 I 13 93
Colville 3 I 0 78
Colville 4 + m 40 34
Colville 8 8 54
Dembo lb I 85 87
Dembo 2 I 0 80
Dembo 3 I 22 85
Dembo 4a + 73 87
DemboS I 19 90
Dembo 6 I 0 6
Dembo 7 I 5 91
Denbo 8a + 87 81

On Colville 8, this algorithm failed to solve NLP.

On Dembo 6, this algorithm failed to solve NLP.

.. + means this problem was selected as one of the four test

problems for evaluating linesearch subroutines/tolerances.

Due to the number and cost of the runs required, we decided

that four of the test problems was a reasonable subset to use when
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investigating which linesearch subroutine/tolerance is most

efficient. The Table 3.5 information demonstrates that the

zero-finding routine was used often on all of the solved problems.

Thus, we chose problems which would most often use the minimization

subroutine. Of the Colville problems, numbers 1 and 4 were

therefore selected. The first Dembo problem selected was Dembo

8a. Dembo lb is next highest in minimization subroutine usage, but

it was not selected so as to avoid including only convex geometric

NLPs. Dembo 4a was therefore selected as the fourth tesL problem

for this set of experiments. The problems selected include two

general and two geometric NLPs, two of which are convex and two of

which are nonconvex.

Having determined the test problems to use, we tested the

subroutine/tolerance combinations. There are 6 combinations of

minimization subroutine and tolerances, and 9 combinations of

zero-finding subroutine/tolerances. We chose Muller's method at

0.01 tolerance as the default combination for both minimization and

zero-finding. Thus, 6 experiments were run testing the 6

minimization subroutine/convergence combinations, all of which used

Muller's method and 0.01 for the zero-finding

subroutine/tolerance. Similarly, the various zero-finding

S-subroutine/tolerance combinations were tested, all using Muller's

J method and 0.01 tolerance when minimizations were performed.

-p
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In Appendix D2, Figures D2.1 through D2.12 display the

error-versus-effort plots for the minimization subroutines, while

Figures D2.13 through D2.24 display plots for the zero-finding

subroutines. Table 3.6 displays the accuracy attained by each

subroutine and tolerance combination. The nonconvexity of Colville

4 caused convergence to a nonoptimal point in 8 of the 16

combinations. Otherwise, no combination appears to have a uniform

advantage if accuracy is used as the criterion.

Table 3.6 Accuracies for Linesearch Subroutines/Tolerances

I I -- Problem II 4--+--4---- -

I Subroutine/Tolerance Col 1 Col 4 Dem 4a Dem 8a I

I Muller min 0.1 -15.60 -16.58 -16.14 -13.79 I
I Muller min 0.01 -15.60 -16.58 -15.29 -14.41 I
I Muller min 0.001 -15.60 -16.58 -15.26 -14.47 I
I Golden min 0.1 -16.29 -1.11 -15.09 -14.87 I
I Golden min 0.01 -15.55 -1.12 -16.24 -14.68 I
I Golden min 0.001 -15.48 -1.23 -16.17 -14.70 I
I - 4

Muller zero 0.1 -15.94 -2.45 -15.15 -14.66
Muller zero 0.01 -15.60 -16.58 -15.29 -14.41
Muller zero 0.001 -15.57 -1.53 -15.17 -14.71
Bisection zero 0.1 -16.15 -16.32 -15.42 -14.60
Bisection zero 0.01 -15.54 -16.58 -15.36 -14.79
Bisection zero 0.001 -15.46 -1.12 -15.38 -14.87

I Regula zero 0.1 -15.75 -16.58 -15.29 -14.74
I Regula zero 0.01 -16.86 -3.12 -14.93 -14.55
. Regula zero 0.001 -16.56 -1.92 -15.04 -14.36

Table 3.7 displays the efficiency of each subroutine and

tolerance combination, relative to center cuts. We chose between

competitive subroutines using the criteria of EA efficiency. This
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may or may not equate directly to linesearch efficiency, depending

on whether each subroutine achieves roughly comparable depths of

cut at each convergence level.

Table 3.7 Efficiencies for Linesearch Subroutines/Tolerances

I Problem

Subroutine/Tolerance I Col 1 Col 4 Dem 4a Dem 8a
M e m

Muller min 0.1 I 1.82 2.26 2.40 2.84IMuller mmn 0.01 I 1.84 I2.29 I2.44 I2.85I

Muller min 0.001 I 1.87 2.03 2.37 2.91
Golden min 0.1 + I 1.56 3.63 1.62 1.77
Golden min 0.01 I 1.78 4.32 1.63 1.80
Golden min 0.001 I 1.57 5.00 1.63 1.83

Muller zero 0.1 I 1.63 2.77 2.34 2.72
Muller zero 0.01 [ 1.84 2.29 2.44 2.85
Muller zero 0.001 I 1.82 4.36 2.48 2.89
Bisection zero 0.1 1 1.60 2.06 2.39 2.70
Bisection zero 0.01 I 1.96 2.17 2.53 2.88
Bisection zero 0.001 I 1.99 4.96 2.73 3.15
Regula zero 0.1 + I 1.53 2.04 2.37 2.79
Regula zero 0.01 I 1.47 2.46 2.37 2.75
Regula zero 0.001 I 1.66 3.46 2.47 2.95

Notes:

+ represents the optimal subroutine/tolerance combination
selected in each category.

The efficiency data of Table 3.7 was then analyzed to

determine which of the subroutines/tolerances should be selected in

the minimization category, and in the zero-finding category.

Table 3.8 contains the efficiency statistics used to select the

optimal linesearch subroutine/tolerance combinations. The first
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four columns are the rank orders of the efficiency values for each

problem. The fifth column has asterisks on the

subroutine/tolerance combinations with nondominated rank vectors.

From these nondominated combinations, we selected those with the

lowest values of sums of ranks, and sums of efficiencies (the sixth

and seventh columns). Asterisks in these last two columns mark

those values which are near-minimum.

Among the minimization subroutines/tolerances, the golden

section with 0.1 tolerance is clearly superior to the other

alternatives, and was therefore chosen for the linesearch direction

experiments to follow. Among the zero-finding linesearch

subroutines/tolerances, the hybrid regula falsi with 0.1 tolerance

was chosen, although the bisection with 0.1 tolerance was almost as

efficient.

iU
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Table 3.8 Analysis of Optimal Linesearch Subroutines/Tolerances

4 - -----------

I I Efficiency rank I Sum
[ +----+- ---+-----+----+--+----+ of
I Subroutine/Tolerance C1I C4 I D4 I D8 I I Sum I Effic'sI
•- - I " -I I--- , -- 4 --- -,

Muller min 0.1 4 I 2 5 I 4 I * I 15 I 9.32
I Muller min 0.01 51 3 61 5 I 19 I 9.42
I Muller min 0.001 6 I 1 4 I 6 I * I 17 I 9.16
I Golden min 0.1 + 1 I 4 1 I 1 I * I 7* I 8.58*
I Golden min 0.01 3 I 5 2 I 2 I I 12 I 9.53
Golden min 0.001 2 I 6 3 I 3 I I 14 I 10.03

4- -- ---- - - ---- -- - -

Muller zero 0.1 4 6 1 2 113 9.46
Muller zero 0.01 7 4 5 5 21 9.42
Muller zero 0.001 6 8 7 7 28 11.55
Bisection zero 0.1 3 2 4 1 * 10* 8.76*
Bisection zero 0.01 8 3 8 6 25 9.54
Bisection zero 0.001 9 9 9 9 36 12.83
Regula zero 0.1 + 2 1 3 4 * 10* 8.73*
Regula zero 0.01 1 5 2 3 I* 11 9.06
Regula zero 0.001 5 7 6 8 26 10.54

Notes:

The columns Cl, C4, D4, and D8 represent the problems
Colville 1, Colville 4, Dembo 4a, and Dembo 8a,
respectively.

The * in the column after the four problem rank columns
denotes those algorithms with an undominated rank vector
on the four problems.

+ represents the optimal subroutine/tolerance
combination selected in each category.
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3.2.5 Experiments and Results

Having determined the best minimization subroutine/tolerance

and the best zero-finding subroutine/tolerance, the three search

direction algorithms were tested on all 13 test problems. Figures

D3.1 through D3.13 of Appendix D3 display the error-versus-effort

plots for the deep cuts using linesearches.

Table 3.9 displays the accuracies attained by the linesearch

cuts on the test problems. As previously seen with the

nonlinesearch deep cuts, the algorithms sometimes converge to

nonoptimal points, on nonconvex problems.

oo"
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Table 3.9 Accuracies for Deep Cuts Using Linesearches

I Search Search Searchik
problem Center I d 1 -g r x

Col 1 -16.83 -16.66 -16.38 -15.55
Col 2 -14.36 -2.99* -14.81 -15.09
Col 3 -15.11 -15.16 -15.01 -14.92
Col 4 -16.58 -15.72 -16.58 -16.58
Col 8 -14.99 -14.86 -1.44* -14.71
Dem lb -8.30 -9.06 -8.82 -9.04
Dem 2 -14.48 -14.43 -14.45 -14.42
Dem 3 -14.38 -14.31 -14.20 -14.15 I
Dem 4a -15.55 -15.26 -16.27 -15.16 I
Dem 5 -15.08 -14.49 -4.32* -3.80*
Dem 6 -17.57 -17.53 -2.74* -17.56
Dem 7 -13.36 -10.62 -6.99* -13.25
Dem 8a -14.64 -14.86 -14.61 -14.53

Notes:

* denotes those problems on which the algorithm did not
converge to the optimum point.

Table 3.10 shows how often each of the three linesearch cuts

were made, how often the level set was actually found and

supported, and the average depth of cut for those iterations on

which the level set was supported. For example, on Dembo 5,

searches along d were attempted 92% of the iterations. 41% of the

iterations resulted in a deep cut where the level set was found and

supported. The remaining 51% resulted in a near-center cut because

.r kthe level set was not found. The column for searching x x has

in parentheses the percent of iterations on which an extended cut

was performed to avoid the linesearch.
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Table 3.10 Frequency and Depths for Deep Cuts Using Linesearches

Search Search Searc I
Iproblem d 1 -g 1 x -x I

Col 1I 82/41 .024 82/82 .021 71/68 .021 (2)

Col 2 1 93/71 .014*1 95195 .008 1 93/92 .009 (3)
Col 3 81/68 .021 80/80 .018 79/75 .018 (0)
Col 4 901 5 .124 79/51 .042 72/57 .044 (1)
Col 8 55/46 .018 * 57/52 .036 (2)
Dem lb 96/ 1 .030 62/62 .014 88/75 .015 (7)
Dem 2 85/26 .033 80/80 .019 80/67 .021 (1)
Dem 3 90/21 .027 85/85 .023 83/72 .021 (3)
Dem 4a 94/ 5 .024 89/89 .025 82/66 .022 (8)
Dem 5 92/41 .016 1 34/34 .019*1 35/32 .019 ( 1)*I
Dem 6 94/31 .009 > 1*1 88/76 .009 ( 2)
Dem 7 93/39 .008 1 86/86 .013*1 85/76 .009 ( 3)
Dem 8a 91/ 0 .110 89/89 .023 86/70 .023 ( 4)

Avg a: +1 .049 1 .023 1 .023

Notes:

The entries for searches along d and along -g are:
percentages of iterations on which the deep cut was tried,/
percentages of iterations on which the deep cut found and

supported the level set, and
average depth of cut for the cuts that did support the

level set.

r_ k
The first three entries for searching along x - x are the
same as those above. The entries in parentheses are the
percentage of iterations on which an extended cut was made,
and thus no linesearch was performed.

* denotes those problems on which the algorithm did not
* .converge to the optimum point.

The average depth of cut figures do not include Colville 2,
Colville 8, Dembo 5. Dembo 6, or Dombo 7, because of the
searches which did not converge to x

+ notes that the average depth of cut for searching along d
is biased, because several problems which had the lowest
frequency of deep cuts (e.g., 0% to two digits) had the
greatest a.
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Note that the level set is found and supported most often by

r _kthe searches along -g and x - x , and least often by searches on

r kd. The frequencies and depths of cut for searching x - x and

searching -g are very similar. The depths of cut for searching

r kalong d appear somewhat deeper than along -g or along x - x , but

the 0.051 average a for searches along d is biased upward by

several problems with unusually deep cuts on a very small number of

iterations.

The depths of cut attained here can be compared with those of

Table 3.3 for nonlinesearch deep cuts. For example, both the

super- and Kelley-cuts position the cut point along -g, as does the

search along -g technique. The algorithms here performed

linesearches for both feasibility and optimality deep cuts. We

could weight the super- and the Kelley-cut depths of cut from

Table 3.3 (0.051 and 0.018) to approximate the depth of cut if

super/Kelley cuts were both used. The result appears to be the

same depth of cut that is achieved here (0.023) only after

considerable linesearch effort.

Table 3.11 shows the relative efficiencies for each of the

three search direction algorithms, on the 13 test problems. After

Table 3.7 above was presented, we chose to combine the golden

section minimization at 0.1, and the hybrid regula falsi at 0.1,

although the two had not been tested together. When we compare the

0.. .-. - I -. .
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search along d efficiencies here with those of the same four

problems in Table 3.7, we see that using these

subroutines/tolerances ,ogether was indeed better than using either

of them by itself.

Table 3.11 Efficiencies for Deep Cuts Using Linesearches

-I +_ - I -- - - I

I I i Search i Search Search k
I problems Center I d I -g Ir -x I

'1- I

Col 1 I 1.00 I 1.46 I 1.23 1.13
Col 2 I 1.00 I 1.42 *l 0.96 0.97
Col 3 I 1.00 I 1.45 I 1.11 1.15
Col 4 I 1.00 I 1.45 I 1.73 1.35
Col 8 I 1.00 I 1.22 I 1.18 * 1.02
Dem lb I 1.00 I 1.37 I 1.46 0.97

I Dem 2 I 1.00 I 1.47 I 1.67 1.41
Dem 3 I 1.00 I 1.26 I 1.27 1.05

De 4a i 1.00 I 1.39 I 1.29 1.00
Dem 5 I 1.00 I 1.45 I 1.57 * 1.31 *
Dem 6 I 1.00 I 1.26 I 1.39 *I 1.01Dem 7 I 1.00 I 1.30 I 1.06 1 0.86
Dem 8a I 1.00 I 1.48 I 1.36 1.14

Avg: 11.00 1.42 I1.39 I 1.15 I
III -4----

Notes:

. denotes those problems on which the algorithm did not
converge to the optimum point.

,'.. The average efficiency figures do not include Colville 2,
.•Colville 8, Dembo 5, Dembo 6, or Dembo 7, because of the

searches which did not converge to x

The deep linesearch cuts tested do not increase algorithm

accuracy in any systematic way. In fact, they occasionally cause

convergence to a nonoptimal point if the problem is nonconvex.

'4"
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Further, they almost uniformly degrade algorithm efficiency

relative to center cuts. The best of the deep linesearches appears

r k
to be the search along x method. However, a percentage of

the deep cuts done by this algorithm are extended-cuts where the

linesearch is not performed, and where efficiency is better than

center cuts. Thus it is possible that the relative efficiency of

this algorithm on the iterations where linesearches were required

was worse than that reflected above, to yield the above efficiency

when extended-cut and linesearch iterations are averaged.

.4

.o
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PART 4

CONSTRAINT EXAMINATION STRATEGIES

In previous sections we have stated that we determine whether
k

or not x E S and find a violated constraint if xk ( S, without

giving an explicit way of doing so. Since the update is of rank

one, only one violated constraint is needed. We could examine all

m constraints and select the one with the greatest violation (or

some similar criterion). Instead, to reduce the number of function

evaluations required, we use the first constraint that is found to

be violated. Note that this choice does not produce a monotonic

decrease in the objective function values, because of the

* k
feasibility cuts. In fact, near x , every feasibility cut moves x

in a direction of increasing objective function values.

Since we cut using the first constraint found violated, the

order in which we examine the constraints in search of a violated

one affects the behavior of the algorithm. We examine several

possible orders of search in terms of their affects on the

robustness, accuracy, efficiency, and simplicity of the EA.

One general consideration motivating the work reported below

is that it is desirable to prevent the ellipsoids Ek from becoming

highly aspheric. It has been reported that in problems where the

78
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cutting hyperplanes Hk can take on only certain orientations, as j
kS

when the fi are linear (for example, see [9]), the Ek sometimes do

become highly aspheric. Numerically, this effect manifests itself

in ill-conditioning of the matrices %, and it can prevent the EA

from obtaining an accurate solution. Also, it has been

conjectured, see [7], that the robustness of the EA may be due to

k
the ability of the x to sample widely-separated regions of the

problem space early in the solution process. This explanation for

the observed robustness of the EA is consistent with the annealina

theory of mathematical programming algorithm robustness suggested

in [11]. If the Ek become highly aspheric, the ellipsoid centers

k
x may not be well distributed throughout the problem space,

resulting in a loss of robustness. Thus it seems plausible that

constraint selection strategies that cause the hyperplanes Hk to be

parallel or to take on a limited number of different orientations

may decrease the accuracy and robustness of the EA. This argues

against repeatedly cutting on a few constraints.

A second general consideration is that it is inefficient to

examine constraints that are not active. This argues for a

strategy that identifies the active constraints and examines only

those. However, an active set strategy which introduces

significant complications in the algorithm would be objectionable

in view of the inherent simplicity of the remainder of the EA.



os

80

Table 4.1 is included here because the set of constraints

which are active at optimality would be expected to affect the

efficiency of various constraint examination options.

a
Table 4.1 Test Problems: Active Set of Constraints at x

problem In m M+ (ii f.(x*) I)
1

Colville 1 5 15 4 3,5,6,9
Colville 2 15 20 11 1 ...7,9,12,13,15
Colville 3 5 16 5 1,3,8,12,15
Colville 4 4 8 0
Colville 8 3 20 2 3,18
Dembo lb 12 3 3 1,2,3
Dembo 2 5 9 5 2,5,7,8,9
Dembo 3 7 15 6 1,3,6,7,9,15
Dembo 4a 8 4 4 1,2,3,4
Dembo 5 8 6 6 1,2,3,4,5,6
Dembo 6 13 18 14 1...9,12,13,15,17,18
Dembo 7 16 25 22 1...12,14,15,18...25
Dembo 8a 7 4 2 2,3

I -4---4 I I-

Notes:

m is the number of constraints active at optimality.

Throughout Part 4, we use only the center cuts explained in

c.k c k
Part 1, where xc x and g 9 gi(x ). These cuts select Hk to be

ik
the support hyperplane to Li {x f ( _ fi(xk )) (the level set

kof f which passes through xk). The statements in Part 4

concerning the solution-preserving properties of certain algorithms

are based on the fact that these are the cuts that are used.

', ".'~~. . 2, -." "" . . .
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4.1 Comparison of Three Simple Strategies

In this section we consider three rules for deciding the order

in which to examine the m constraint functions of NLP in search of

a violated constraint, namely top-down order, cyclical order, and

random order.

4.1.1 ~Too-down Order

The simplest approach is to always examine the constraint

functions in top-down order. Thus, at each iteration k, f (x ) is

k
evaluated first. If f (xk ) > 0 we stop the search and use fl in

k
constructing Hk; otherwise, f2 (x ) is checked, and so on. The

first index i I m for which f.(x k ) > 0 is the index used in1

constructing Hk. Of course, it may turn out that fi(xk) 0 for

ki = 1...m, and then Hk is constructed using f (x. If the

selected constraint i is near the top of the list, it is more

likely to be selected again on subsequent iterations when it is

again violated. The disadvantage of the top-down strategy lies in

the nossibility that constraints near the top of the list will be

used over and over to the exclusion of other constraints that may

also be violated, perhaps decreasing the robustness or accuracy of

the algorithm. This constraint examination st7(ategy was used in

" "the EA implementation of [12].

.~\. ,
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4.1.2 Cyclical Order

The next strategy we consider, cyclical examination, attempts

to insure that violated constraints near the bottom of the list are

not repeatedly ignored in favor of those near the top. Let ik be

the index of the last constraint function examined on iteration k.

The first iteration of the cyclical strategy is identical to that

of the top-down strategy. On subsequent iterations however, the

first constraint to be examined has index p = ik-i+ 1, or p = 1 if

ik M. If f (x k ) > 0, we stop the search; otherwise the search

continues with index p + 1 (or 1 if p = m), and so on. If a

violated constraint is not found within m constraint function

examinations, then xk E S and a Phase 2 cut is made. The cyclical

strategy requires essentially no increase in algorithm complexity

over the top-down strategy. In view of the general considerations

outlined in Part 4, the cyclical strategy might be expected to

increase algorithm robustness and accuracy. The ellipsoid

algorithm implementation EA3 uses a cyclical strategy that is

identical to the one described above, except that the first

constraint examined on iteration k + 1 has index 1 if Hk is

constructed using fm+l"

14Random Ouder

The third strategy we consider, random constraint examination,

is also intended to prevent the ordering of the constraints in the

list from causing some constraints to be used to the exclusion of

C C .. .* .
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others. Before the first iteration we generate a set of m

pseudo-random numbers, index them 1 to m, and then list the indices

in increasing order of the associated random numbers. This list of

randomly-ordered indices is used like the list l...m in the

cyclical method above. A new randomized list is constructed at the

end of each iteration in which the last index on the current list

was examined. An increase in algorithm complexity and

computational effort is required to accomplish the randomization,

but algorithm robustness and accuracy might be improved over even

the cyclical approach, because of a further decrease in the

sensitivity of the algorithm to the initial ordering of the

constraint indices.

5I
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4.1.4 Experiments and Results

Figures D4.1 through D4.13 of Appendix D4 show the performance

of the cyclical, top-down, and random constraint selection

" strategies when they are applied to the 13 test problems, and

Table 4.2 summarizes the accuracy and efficiency results.

Table 4.2 Experimental Results for the 3 Simple Strategies

accuracy efficiency

- prob Cyclic Top-dn Random Cyclic Top-dn Random

I Col 1I -16.83 -16.85 -16.87 1.00 0.99 1.09
-Col 2 -14.36 -14.04 -14.31 1.00 1.07 1.09
I Col 3 -15.11 -15.07 -15.05 1.00 i1.09 1.11i
I.Col 4 -16.58 -16.58 -16.58 1.00 0.98 1.25
I Col 8 -14.99 -15.85 -14.99 1.00 1.03 1.08
Dem lb -8.30 -8.95 -8.92 1.00 1.00 0.99
D BDm 2 -14.48 -14.36 -14.51 1.00 1.44 1.02

"-Dem 3 -14.38 -14.28 -14.29 1.00 1.13 1.10
""Dem 4a -15.55 -15.40 -15.48 1.00 1.04 1.01
I'Dem 5 -15.08 -14.82 -14.96 1.00 1.07 1.00

" Dem 6 -17.57 -17.52 -17.50 1.00 1.14 1.03
Dem 7 -13.36 -13.18 -13.31 1.00 1.21 1.07

IDem 8a -14.64 -14.90 -14.84 1.00 0.98 1.00

average efficiency: 1.00 1.09 1.06 I

Notes:

The solution accuracy reported is the log of the lowest E(x
k

attained.

The algorithm efficiency reported is the relative efficiency
s defined in Part 2, computed using the cyclical strategy as
variant A.

None of the strategies shows a clear superiority in accuracy,

and the three strategies are equally robust in the sense that none
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of them fail to solve any of the problems. However, the relative

efficiency of the cyclical strategy is clearly superior to that of

the random strategy, and the relative efficiency of the random

strategy is in turn somewhat better than that of the top-down

strategy.

In view of the general considerations discussed in 4.1, it is

counter-intuitive that the strategies turn out not to differ much

in terms of accuracy or robustness; we expected that robustness and

ultimate accuracy would both be improved by the elimination of

regular patterns in the order of constraint examination. The

superior efficiency of the random strategy relative to the top-down

strategy is also counter-intuitive, in view of the computational

effort that is required to randomize the constraint indices. Also,

it is surprising that the top-down strategy is not better than the

cyclical strategy for Colville 2, since 8 of the active constraints

in that problem appear in the top half of the list of indices.

Finally, we expected that the top-down and cyclical strategies

would be about equally efficient on Dembo 5, since that problem

(like Dembo lb and Dembo 4) has all constraints active at

optimality. These discrepancies between the experimental evidence

and our intuitive preconceptions serve to underscore the importance

of computational testing in the evaluation and comparison of the

methods.
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Because of its superior efficiency, the cyclical strategy is

used in the remainder of this paper whenever a subset of

constraints is to be examined.

4.14 Cyclical Exaaion Stratesy Statistics

As described in 2.3.1, the experimental software collected

numerous statistics in addition to the performance measurements of

error and effort. Since the cyclical constraint examination

strategy will be used now as the standard for comparing other EA

variants, Table 4.3 display several statistics for the cyclical

k
strategy. The statistics are the percentage of iterations where x

is infeasible, the percentage of effort used to determine whether

-. k
x is feasible, and the percentage of iterations that found new

record points.

S.

I,

.

" °-' '........" ............. ° . "° o + ... e"- * U* .* *° o
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Table 4.3 Cyclical Strategy Algorithm Behavior Statistics

-I' IS of iterates I% of PSCPU time I% of iterates
"I... fir which used to check that were new
- prob X- E S, feasibility record points

.Coil 67 41 10

.Co12 77 12 2
"Co13 83 48 13
'Co14 0 39 11
Col8 52 75 13

-Demlbi 88 12 4
,Dem2 83 40 10

"' IDem3 82 40 7
"Dem4a 79 17 6
IDemS 76 22 6
IDem6 92 20 4
IDem7 91 19 2
-Dem8a 74 24 9

Note the high percentage of effort spent evaluating the feasibility

constraints. This was the motivating factor for developing the

alternative constraint examination strategies of 4.2 and 4.3.

' ..".
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. Us i - Active Set Strategv

In addition to the algorithm behavior statistics reported in

Table 4.3, we also counted, for each problem, the number of times

that the cyclical constraint examination strategy causes each

function to be used in constructing Hk. Tables 4.4 and 4.5 show

these statistics for the test problems Dembo 8a and Dembo 3.

Table 4.4 Use of Functions in Constructing Hk for Dembo 8a

! I

I number of times function f. was used I
I in constructing R 1

interval of -

iterations I Feasibility constraints I

Si=lI i=2 i=3 i=4 i=5

1- 100 6 32 36 1 25

101- 200 3 32 37 28
201- 300 36 38 26

301- 400 34 38 28
401- 500 36 39 25
501- 600 35 39 26
601- 700 37 36 27
701- 800 35 38 27
801-900 36 38 26
901-1000 33 40 27

1001-1100 36 37 27
I 1101-1200 33 41 26

1201-1300 36 37 27
11301-1400 35 39 26

1401-1500 37 37 26
1501-1600 35 38 27

I 1601-1700 35 38 27
-- 1701-1800 35 39 26

I1801-1900 II36 I38 II26 I
I ."- - -~- - 4 - -
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For Dembo 8a, a = 4, thus the indices 1 through 4 are the

feasibility constraints, and the last column is for the objective

function. The best solution found for this problem occurred at

* iteration k = 1890, with constraints 2 and 3 active at optimality.

Note that after about 200 iterations, these are the only

constraints ever used for making feasibility cuts.

p.
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Table 4.5 Use of Functions in Constructing Hk for Dembo 3

I I 4'

I I number of times function i was used
I I in constructing 1 k I
I interval of 1
I iterations I Feasibility constraints III II I

i-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 I

S 1- 100 22 17 9 5 12 9 6 3 2 1 1 13
I 101- 200 10 2 13 14 13 14 8 11 15
I 201- 300 11 13 13 13 14 8 13 15
I 301- 400 13 13 13 13 14 6 14 14
I 401- 500 16 14 13 13 13 4 13 14

501- 600 16 13 13 13 13 4 13 15
I 601- 700 16 15 14 13 13 2 13 14

701- 800 15 15 15 13 13 13 16
I 801- 900 16 14 13 13 13 13 18

901-1000 17 15 15 13 13 13 14
I 1001-1100 16 15 14 12 12 13 18
I 1101-1200 16 15 15 13 13 13 15
I 1201-1300 16 16 14 13 13 12 16
I 1301-1400 17 15 13 13 13 13 16
I 1401-1500 16 16 14 13 13 13 15

1501-1600 17 14 15 12 13 13 16
I 1601-1700 15 15 14 14 13 13 16
I 1701-1800 16 15 14 12 13 13 17
I 1801-1900 16 16 15 13 12 12 16
I 1901-2000 16 14 14 13 13 13 17
I 2001-2100 15 16 14 13 13 12 17
I 2101-2200 16 15 14 13 13 13 16
I 2201-2300 16 15 14 13 13 13 16
I 2301-2400 16 15 14 12 12 13 18
I 2401-2500 16 15 15 13 13 13 15
I 2501-2600 16 16 14 13 13 13 15
I 2601-2700 15 13 14 13 12 11 22
I 2701-2800 15 11 14 14 12 10 24
12801-2900 6 6 5 6 5 5 67

The best solution found for this problem occurred at iteration

" - k = 2845, with constraints 1, 3, 6, 7, 9, and 15 active at

optimality. Note that after about 100 iterations only one other

constraint (i = 13) plays a role, and after about 700 iterations
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the only constraints ever used in constructing "k are those that

are active at optimality.

-p.

a,
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4.. The Active Set ratmy

The statistics reported in Tables 4.4 and 4.5 show that as the

EA follows its convergence trajectory it generates, essentially for

free, information that can be used to predict which constraints

will be active at optimality. In this section we develop an active

set strategy based on this predictive capability, and show that it

can sometimes dramatically improve the efficiency of the EA.

Recall that the EA examines constraints at each iteration to

determine whether or not x kE S. If xk ( S. one violated constraint

has been found (there may be other violated constraints as well,

but these are not found because the examination stops at the first

one). Suppose the algorithm marks each constraint that is found to

be violated. and let I+ be the set of constraints that have been

marked after some iterations. The set I is the current active set

of constraints, and at some point we could begin to examine its

elements before those in the inactive set I- = (l...m) \I+. This

idea is the basis for our active set strategy. We define the

feasible regions for I+ and I- as

*-. .1 .I

+ (x I fi(x) 0, i I,
X +

" (x I fi(x) 0, i I-, I-"_
X I' R n, I =06.
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When examining constraints to determine if xk E S so that the

correct feasibility or optimality cut can be made, we

examine the constraints in I first. If a violated constraint is

found in I+ , so that xk 4t X+, then xk 4 S and we make a

*k + k
feasibility cut. If x E X+ , however, then x E S if and only

k-
if x E X-, so whether a feasibility cut or an optimality cut is

k -k +
required depends on whether x E X-. When x E X+ , we can

assume either that there are constraints in I that will be

violated during future iterations, or that there are not. If we

suspect that there are constraints in I that will be violated, we

should test whether xk E X, but if we believe that I+  contains

all the constraints that will ever be found violated, we merely

k k -
assume that x E S without testing whether x E X-. We now

consider the consequences of adopting each of these policies when

their underlying assumptions are wrong.

The first policy assumes that some constraints in I may be

k
violated, and so tests whether x E X. If the assumption is wrong

and I- contains no violated constraints, performing the test shows

xk E 17 and some computational effort is wasted on unnecessary

constraint examinations. However, the policy guarantees that the

cuts made will be solution-preserving and that any record points

*that may be found will be S-feasible. When the active set is

changing rapidly, it is reasonable to assume that sometimes

x k so we use the policy of checking I- when xk E X+ .
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The second policy assumes that I contains no constraints that

will be violated, and avoids needless work by not testing whether

k +
x E X7. Then I is essentially unchanging, it seems reasonable to

assume that if xk E X+ then xk E S, so we make an optimality cut

if x E X+ and a feasibility cut if xk 4 X+ .  Further, we declare

x k to be a record point if xkE X + and f m+(x k) fr, even though

we are not certain that xkE S.

If the assumption xkE X- is wrong (I contains a violated

constraint), then under this policy an optimality cut will be made

when a feasibility cut is required, and such a cut may

not be solution-preserving. If xk is declared to be a new

record point but xk 4 X, then the new record point is

S-infeasible and the record value fr is incorrect. To distinguish

between record points that are known to be S-feasible and those

that are not known to be S-feasible, we call the former Iue record

oints and the latter maybe-record points. Thus a record

point can be either a true record point or a maybe-record point.

*: In Section 1 we showed that, without an active set strategy,

the BA always preserves x (if the f are convex). An active set

s strategy using the policy of not testing whether xk E X generates

cuts that may or may not be solution-preserving. If xk , then

x k 3, and the resulting feasibility cut is solution-preserving
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-,k + k r
for the reasons given in Section 1. If xkC X and fm+1 (U ) > f

the optimality cut also preserves x (and G and xr) for the

reasons given in Section 1. In fact, an optimality cut

when xE X+  and f 21(x) > fr is solution-preserving even ifwhen1
k"

-. 4 X-, because the cut preserves G (and thus preserves x*).

When xk E x+  and f+ (xk) fr so that xk is a maybe-record

point, what the optimality cut preserves is

+, k

G+ ff (x [ fmil(X) *j fm+1 (xk))

and the presumed solution set S n G+ . If xk E X, then xk E S, x

is a true record point, and the cut is the same solution-preserving

optimality cut described in Section 1. However, if xk X, then

x is neither feasible nor a true record point and xk ( f G+)

Infact (s nG + if f m+X) ( f m+ ), and in that case the

cut is not solution-preserving. In general, of course, we do not
0

know the value of f (x ), so if we are not checking whetherm+1
xk E X we have no way of knowing for sure whether (S f G+) = 0.

Thus, if I contains active constraints, the policy of not

checking whether xk E X can produce cuts that are not

k + k
solution-preserving when x E I , f m+(X ) < fr. and I i 0.

To detect the occurrence of non-solution-preserving cuts

whenever it is possible that one has been made, we periodically
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check the latest new maybe-record point xr for S-feasibility. If

r - r
x E X then x is a true record point. Further,

* r
x E (S n G) C Ek, since any cuts made after finding x are sure to

have been solution-preserving.

If xr f X- then we backtrack to the last ellipsoid known to

contain a nonempty solution-containing set. If a true record point

has been found, all subsequent cuts are solution-preserving until

the next maybe-record point xr is found. We save the ellipsoid E
r

a
then, prior to the cut which might discard x . If a backtrack is

later required, restoring the saved ellipsoid Er ensures that
ar

x E (S n G) C E . Having backtracked to this earlier point in the
r

trajectory, we move the offending constraint from I to I and

start on a new trajectory. Backtracking incurs a computational

penalty, but it will never occur if I and I have been correctly

identified.

The performance of the algorithm is affected by when and how

often the active set strategy checks whether xr X-. We make the

rk kcheck only at points x that are maybe-record points, because if x

is to be checked, iterations after xk will only add to the length

of the backtrack if xk 4 X-. Further, we check xk before updating

xr and f r so that the previous record point is also available for

k -r k k.testing. If x E X we let x = ( (because we know that x is a

true record point and (S n G+)# 0), and we continue with an

Ie
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optimality cut. If xk o X-, we test whether xr E X- and if it is

.**then no backtrack is required and a feasibility cut continues at

kIS. Otherwise, we backtrack to the saved ellipsoid. Since the

ellipsoid was saved at an I+-feasible point, we test for

I -feasibility and make a feasibility or optimality cut as

required.

We have now developed the primary elements of our active set

strategy. Given an initial or current estimate of the active set

of constraints I+, we test whether xk E X. We make

xk  X +

feasibility or optimality cuts according to whether x 4 or

k + k xkx C (instead of according to whether x S or E S) in

order to avoid examining the constraints in I , which we think

are inactive. Because constraints may drop out of the

active set as the ellipsoids shrink, we periodically revise I+ on

the basis of the violation history of the constraints in I+.

If a constraint was never found to be violated since the previous

revision of I+, it is dropped from I+.

As the algorithm progresses, it may generate maybe-record

* +
points that are I -feasible. Some of these record points are

checked as they are found, to see whether they are I -feasible as

* well. Others are not tested, to avoid constraint function

evaluations. Since cuts at maybe-record points can fail to

p rpreserve x , we periodically test the current maybe-record point x
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to see if xr E X-. If xr is not feasible, the algorithm must

backtrack to a point where it was previously determined that

(S n G)# 0. When the inactive set I is tested and one of its

constraints is found to be violated, that constraint is added to

i+

We start with I+ empty, and add a constraint to I+ only when

all of the current set of active constraints are satisfied. This

process does not add to I+ any constraint which is redundant in the

sense that it is not needed to show infeasibility. Thus the active

set I we construct is minimally sufficient in that constraints are

added only when the existing set does not suffice to show

infeasibility. This increases the efficiency of the active set

algorithm because if redundant constraints were added they would

have to be examined when I+ is tested on every iteration.

The two processes of dropping from and adding to I+ proceed

simultaneously. Checking for inactive constraints to drop does not

increase the complexity of the algorithm very much, and requires

only a small amount of extra computational effort. Checking the

* +
- constraints in I and reaasigning violated ones to I is also

simple if all maybe-record points are tested for I--feasibility.

Otherwise, the need to save ellipsoid data and backtrack when

necessary adds significantly to the complexity of the algorithm;

however, large gains in efficiency might be realized by avoiding

*.A a..k.,k ......- - --2
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some of the tests.

How often we check whether constraints can be dropped 
from I+

(a drew-chock), and how often we check whether constraints must be

added to I+ (an add-chec k), are parameters that can be varied to

control the behavior of the algorithm.

Consider the influence on algorithm behavior of the drop-check

interval, which we name Ak-. If Ak is too small, a truly active

constraint may appear to be inactive. Only one violated constraint

can be identified per Phase 1 iteration, and therefore if too few

iterations occur between drop-checks some violated constraints may

be overlooked. On the other hand, if Ak is overly large, then

constraints that are truly inactive may be retained in I+ longer

than necessary, causing effort to be wasted in needless function

evaluations whenever it is necessary to test whether x E X

To set a plausible lower bound on Ak-, we treat the

algorithm's discovery of violated constraints as a random process.

We model the discovery of constraint violations by a multinomial

distribution, assuming that, on each Phase 1 iteration, each active

constraint is equally likely to be found violated. Then, assuming

that all of the constraints in I are active, we calculate Ak- as

the smallest number of Phase 1 iterations sufficient to make the

probability 2 .99 that each active constraint Aas been found to be
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violated at least once. Further details about this probability

model and its use in setting a minimum value for Ak are given in

Appendix B.

The lower bound for Ak is used when I is changing, such as

on initialization and when a constraint has just been dropped from

or added to I+ . When I+ is unchanging, we increase Ak- to reduce

the frequency of drop-checks and thus the computational effort

expended in examining and reinitializing the vector of constraint

violation histories. This increasing of Ak is accomplished

automatically, by doubling Ak whenever a drop-check finds that all

of the constraints in I+ are still active.

Now consider the add-check interval, Ak+, the number of

maybe-record points that must occur before the most recent one is

checked for I--feasibility. The minimum value of Ak+ is 1, when

every maybe-record point is to be checked. Every other maybe-record

point is checked if Ak= 2, and so on. If Ak is too small, then

I -feasibility is checked frequently, so that effort is wasted if

I has been properly identified. On the other hand, if I contains

a constraint that will be active, an overly large Ak+ increases

both the likelihood that backtracking will be needed and the length

of the backtrack if one is needed.

When there is reason to suspect that I has not yet been

. .

"9



101

correctly identified, we use the minimum value of Ak+ = 1 to avoid

backtracking. When I is unchanging, so that add-checks are

probably unnecessary, we increase Ak to save the computational

effort that they would require. As in the case of the drop-check

interval, the tradeoff is between the computational effort to be

saved by lengthening the interval (here the effort required to

evaluate the constraints in I) and the penalty incurred if the

interval is made overly long (here the effort required for

backtracking). In this case, however, the tradeoff depends on how

well the active set has been identified. Therefore, the growth

+
factor we use for Ak is not 2 (as it was for Ak) but instead

depends on the apparent stability of I+ . Details about this

dependency and the adaptation of the Ak+ growth factor are given in

Appendix C.

We now formalize our active set strategy as follows:

1.) initialization:

set I +

set I 1...m)

set Ak : 1

set Ak at its lower bound (see Appendix B)

set k+ 0 k 0
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2.) start a new EA iteration:

if k < Ak

then k- = k- + 1

go to 3

else set k = 0

check constraint violations in last Ak iterations
2 +

if all constraints in I were found to be violated

then Ak = 2Ak

go to 3

if any constraints in I+ were never found violated
+

then drop those constraints from I

set Ak+ =1
set Ak at its lower bound

P..4 +
set k = 0

k3.) determine if x is a maybe-record point:

if xk 4 X
+

then let i be the index of the violated constraint

go to 5

else if f +(Xk)fr

then go to 4

else let i = a + 1

so to 5

-wJ

-.-. -..--..-. -..-.. - .*.*,. - . - . . ..-... -- ..... ...-- .. . . _ . . . . ... . . . ,
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4. x k is a maybe-record point:

if k +<(Ak+

then save Ek if required

* lot i = + 1

SO to 5

else if x k C I

*then set k+ =0

increase Ak~ (see Appendix C)

let i = a + 1

go to 5

else backtrack if required

add violated I -constraints to I+

set Ak =1

set Ak at its lower bound

set k- =0

5.) finish this EA iteration:
make the cut using f.i to create H

update Q and x

if convergence has not occurred

then go to 2

else if xr t X

then backtrack

else stop
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4.2.2 Experiments and Results

Figures D5.1 - D5.13 of Appendix D5 contain error versus
.4

effort curves comparing the active set strategy to the cyclical

° constraint examination strategy of 4.2.1 on each of the 13 test

problems, and the results are summarized in Table 4.6.

Table 4.6 Experimental Results for the Active Set Strategy

I I accuracy I efficiency % of iters I
I -4----+ to find I

I prob Cyclic I Active I Cyclic I Active stable I+

I Col 1 -16.83 I-16.10 I 1.00 I 0.73 4.5
ICol 2 -14.36 1-14.33 I 1.00 I 0.98 71.1
ICol 3 -15.11 -14.92 I 1.00 0.75 1.5
I Col 4 -16.58 -16.58 I 1.00 I 0.66 0
I Col 8 -14.99 -15.85 I 1.00 I 0.43 5.8
SDen lb -8.30 -8.87 I 1.00 I 1.01 3.3
SDem 2 -14.48 -14.53 I 1.00 1 0.83 1.4
I Dem 3 -14.38 I -14.41 I 1.00 I 0.83 38.9
I Dem 4a -15.55 I -15.70 I 1.00 I 1.01 0.4
SDem 5 -15.08 -14.63 I 1.00 I 1.00 1.9
SDem 6 -17.57 1-17.57 I 1.00 I 1.00 25.7
I Dem 7 -13.36 I -12.35 I 1.00 I 1.04 75.7
SDem a -14.64 I -14.71 I 1.00 I 0.91 21.7

III I I

average efficiency: I 1.00 I 0.86

Notes.

. . .The solution accuracy reported is the log of the lowest E(x )

attained.

The algorithm efficiency reported is the relative efficiency

s defined in 2.2. computed using the cyclical strategy as
-, *variant A.

Using the active set strategy causes essentially no change in

algorithm accuracy. m+/m is the ratio of the number of constraints

.o4

* 4.

* . 4 4 * 4 4
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active at optimality to the total number of constraints. We

expected the active set strategy to improve the efficiency of the

algorithm most on problems for which m /m is small, little on

problems for which m +/m is close to 1, and not at all on problems

for which all the constraints are active at optimality.

Table 4.7 repeats the efficiency results given above, with the

problems rearranged in increasing order of m+ /m. A column is added

to show the best possible efficiencies the active set strategy

could have achieved. This value is the efficiency that would

result if the active set strategy used only 100(m /m)% of the

cyclical feasibility-checking effort from Table 4.3. For example,

Colville 1 has m /m = .27 and the cyclical strategy spent 41% of

its effort evaluating the feasibility constraints. The best

possible effort expenditure then has two components. All the other

algorithm steps except feasibility checks still use 59% of the

original algorithm time. Feasibility checks could be reduced to

.27(41%) = 11% of the original algorithm time. Thus, the active

set strategy could use as little as 59% + 11% = 70% of the cyclical

strategy effort.

A'.
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Table 4.7 Active Set Efficiency vs m+/m

I ,- I- +

I IActual Possible I
I prob m+/M Efficiency Efficiency I

* Col 4 .00 .66 .61
Col 8 .10 .43 .33
Col 1 .27 .73 .70

tCol 3 .31 .75 .67
Dem 3 .40 .83 .76
Dem 8a .50 .91 .88
Col 2 .55 .98 .95
Dem 2 .56 .83 .82
Dem 6 .78 1.00 .96
Dem 7 .88 1.04 .98
Dem 5 1.00 1.00 1.00
Dem lb 1.00 1.01 1.00
Dem 4a 1.00 1.01 1.00

It is encouraging to note that the efficiency of the active

set strategy was uniformly close to the best possible value. The

differences are attributable to several factors. First, the best

possible efficiency figure assumes that the inactive constraints

are never evaluated. The active set strategy though must actually

check these constraints when testing new maybe-record points.

Second, constraints which are inactive at optimality may be in the

active set early in the trajectory before being dropped from I

Finally, there is a slightly increased overhead for the active set

strategy algorithm.

The experimental results thus confirm our expectations, and

imply that the active set strategy is not much help on problems

where more than about 3/4 of the constraints are active at

- -I ... .. • - " • • % ' ' " , " ! " " T ' " , -. ,, ..,. .,,,,.:,, .. :.. , T-7
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optimality. Of course, the strategy might work very well even

where only one or a few constraint functions were inactive at

optimality but were also dramatically more difficult to evaluate

* than the others.

As the iterations of the algorithm progress, the active set

strategy's current estimate of m+ , which we call m , starts at zero

and is then adjusted repeatedly until a sufficient active set has

been identified. On problems for which more constraints are active

at optimality than are required to uniquely determine x , the

active set strategy typically omits the extra, unneeded constraints

from I. This phenomenon is illustrated on test problem Dembo 6,

for which a+/m = .67, and on test problem Dembo 7, for which

m+/m = .76

Figures 4.1 through 4.13 show the variation of r+/m with

iteration number for each of the problems. Dashed horizontal lines

are drawn on the graphs for Dembo 6 and Dembo 7 at ordinate values

corresponding to m+/m for those problems. On Colville 4 no

constraints are ever found to be violated, so m = 0 for the entire

. solution process.

-4Oo

*I *e
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Table 4.4 displayed the function indices used to create Hk for

Dembo 8a, using the cyclical constraint examination strategy.

Table 4.8 displays the same information, using the active set

strategy.

Table 4.8 Use of Functions in Constructing Hk for Dembo 8a
When Active Set Strategy is Used

I number of times function f. was used
I in constructing Hk 1

interval of +--
iterations I Feasibility constraints

Si=lI i=2 i=3 i=4 i=5I

1- 100 1 32 39 0 21
101- 200 5 34 36 0 18
201- 300 0 34 38 0 18
301- 400 0 35 38 0 18
401- 500 0 37 37 0 14
501- 600 0 35 39 0 15
601-.700 0 37 37 0 18
701- 800 0 33 39 0 15
801- 900 0 34 40 0 18
901-1000 0 36 38 0 17

1001-1100 0 36 37 0 16
1101-1200 0 37 37 0 14
1201-1300 0 36 37 0 17
1301-1400 0 36 38 0 15 I

1401-1500 0 36 36 0 17 I
1501-1600 0 35 40 0 21 I

I 1601-1700 0 34 39 0 21
I"1701-1800 0 35 38 0 21
11801-1900 0 36 38 0 18

Note that the active set did not need to cut on the fourth

constraint, which the cyclical strategy had found violated once

during the first 100 iterations.
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It is interesting to note when the final active set was

identified in terms of cuts being made, for the active set strategy

versus the cyclical strategy. Table 4.6 stated that the active set

strategy did not have I+ stable until 22% of the iterations had

passed, although the cyclical strategy information of Table 4.4

indicates that constraints were not needed after the first 200

iterations (perhaps, 10%).

Table 4.8 demonstrates that the active set strategy is no

slower than the cyclical strategy in ceasing to make cuts on

inactive constraints. However, the active set strategy did keep

the first constraint on the active list until iteration 400,

because of its arrangement of the drop-check intervals.

.4I
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4.3 Examining Record Constraint

In Part 1 we defined a solution-preserving cut as one which
*

ensures that x E Ek+l, under the hypotheses of NLP and convexity

of fl...fm. We demonstrated that feasibility cuts are

solution-preserving if Si C H and that optimality cuts are

solution-preserving if G C H . For center cuts, this means that

feasibility cuts when xk 4 S and optimality cuts when xk E S are

solution-preserving. All cuts discussed here are center cuts where

x = xk and gc = gj(xk).

In 4.2 we demonstrated that it is sometimes possible for an

optimality cut to be solution-preserving even when xk E S'. In this

section, we specify when such cuts are solution-preserving and

analyze a constraint examination strategy using such cuts.

In general, an optimality cut is solution-preserving if

G C Hk. For center cuts, Hk supports

kS
L Lm+ = (x I fm+l(x) S fm+i (xk)).

Thus, (center) optimality cuts are solution-preserving if G C Lm+1 ,

that is, if xk E G'. Optimality cuts when xk E G' are solution-

preserving regardless of whether x k E S.
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To determine whether xk E G we test whether fm+l(x k )  f. In

effect, the record value gives rise to a new constraint,

f m+l(x) < fr, which we call the record constraint.

This record constraint has a desirable property. As new

record values are found, the record constraint becomes more

restrictive and is therefore always in the active set of

constraints. Because the record constraint is always active, it

seems plausible that examining it before examining the feasibility

constraints may speed EA convergence. Below, we analyze a strategy

which tests the record constraint first.

4.3.1 The Record-first Strategy

kIn this strategy, we first test f+ 1 to see whether x E G. If

k
x E G', we make an optimality cut. If not, we test f.f..f to see

if xk E S. If xkE S', we make a feasibility cut. If xk E (S n G),

r
a new record point, then we update f and make an optimality cut.

We call this the record-first strategy.

We call the EA presented in Part 1 a feasibility-first

k k.
strategy since it first determines whether x E S. If x E S. it

then evaluates fm+1 (x 
k ) to determine whether xk is a record point.

The feasibility-first strategy thus categorizes xk as being in S',

or in s n G', or in S n G.
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k.
In Table 4.9, note that x is a member of one of the regions

k
s, n G , s' n G, S n G', or S n G. Depending on which region x is

k
in, the two strategies vary as to which set x is classified as

being in, which cut is made, and how many function evaluations are

required to make the classification and cut. Suppose, for example,

k
that x E (S n G'). The feasibility-first strategy would first

test whether x k E S, and evaluate all m functions doing so since x
k

is feasible. Then, fm+l is evaluated, so m + 1 function

evaluations were required before the feasibility-first strategy

makes its cut. On the other hand, the record-first strategy would

first evaluate fm+l" Since the record constraint is violated here,

the cut can be made after only 1 function evaluation. Entries such

as l...m mean that a violated feasibility constraint may be found

as the first function evaluated, or not until the last one is

checked.

Ko
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Table 4.9 Comparison of Feasibility- and Record-First Strategivs

k
If x is a member of...

Feasibility-first: I s n G' I s, n G I s n G' I s r G I
4-I ---- 4--I

xk classified in I S I s' I s n G' I S n G III I I I I
I - - I -4 I --- '.

cut made I Feas. I Feas. I Optim. I Optim. III I I I I
I -I --- +- -- 4- -- -- +

I function evaluations I 1...m I 1...m m +1 I m+1 I
I = required to cut I I I I I
4-I -4 I I -- +

k
If x is a member of...

Record-first: I ' G G' I s' n G I S n G' I S n G I
xkI xk classified in I G' I s'fn G I G' I s nG II I I I I I

4-- -- 4 I I -t -4

I cut made I Optim. I Feas. I Optim. I Optim. II I I I I I

I function evaluations I 1 I 2...m+1 I 1 I m + 1 I
I required to cut I I i I I
4- I I ---- 4-

Note that the strategies differ in whether a feasibility or an

k
optimality cut is made only if x E (S, n GI). We do not know

whether one cut is better than the other, when both can be made.

Our policy of cutting on the first violated constraint does not

permit strategies where both record- and feasibility-constraints

can be simultaneously found to be violated.

There are considerable differences between strategies in the

number of function evaluations required before a cut is made. The

r
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record-first strategy saves up to m - 1 evaluations if x is in

k.
S, n G', saves exactly m evaluations when x is in S n G', and

k. S
requires only one more evaluation when x is in s, n G. How this

affects our experimental results will depend on the percentage of

centerpoints in each region, and on how early a violated constraint

is found when searching the m feasibility constraints.

.'

-I

.'

.I



-- -- - -----

128

4.1.2 Experiments and Results

We do not incorporate an active set strategy for the

feasibility constraints so that we can more easily isolate the

improvement due solely to use of the record constraint. The

feasibility-first strategy used for comparison purposes will be the

cyclical method of 4.1.

Figures D6.1 through D6.13 of Appendix D6 display the

error-versus-effort curves for the 13 test problems, comparing the

record-first strategy to the feasibility-first strategy.

Table 4.10 summarizes the accuracy and efficiency findings.

Table 4.10 Experimental Results for the Record-First Strategy

I I accuracy efficiency I

I prob Feas Record Feas Record I

Col 1 -16.83 -16.60 1.00 0.89
Col 2 -14.36 -14.33 1.00 0.97
Col 3 -15.11 -14.98 1.00 1.01
Col 4 -16.58 -16.58 1.00 0.66
Col 8 -14.99 -15.85 1.00 0.76
Dem lb -8.30 -9.28 1.00 0.99
Dem 2 -14.48 -14.43 1.00 1.01
Dem 3 -14.38 -14.46 1.00 1.00

I Dem 4a -15.55 -15.40 1.00 1.07
I Dem 5 -15.08 -14.56 1.00 0.96
Dem 6 -17.57 -17.50 1.00 0.98
Dem 7 -13.36 -13.31 1.00 1.05
Dem 8a -14.64 -15.24 1.00 1.01

Averaged efficiency: 1.00 0.95 I
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Notes:

The measure of accuracy used is the lowest log
relative combined solution error attained.

.. The measure of efficiency used is PSCPU time
relative to PSCPU time used by the feasibility-first
(cyclical) strategy.

The new strategy does not degrade the accuracy of the

algorithm. The efficiency is slightly degraded on Dembo 4a and

Dembo 7. The most noticeable improvements in efficiency are on

Colville 4, Colville 8, and Colville 1.

a ii



PART 5

DISCUSSION AND CONCLUSIONS

Previously, the ellipsoid algorithm had been shown to

correctly solve a large number of nonlinear programming problems

(both convex and nonconvex) and to do so with effort which is

competitive to other solution techniques. In this study, we

analyzed variants of the EA to determine whether we could improve

the accuracy or efficiency with which it solved a set of 13 test

problems. There were two main types of variants, those which

created deep cut hyperplanes, and those which determined the order

in which the feasibility constraints were examined.

Five deep cut EA variants were tested which did not require

using a linesearch to create Rk , and three deep cut variants were

tested which did require a linesearch. Before conducting the

linesearch experiments, various linesearch subroutines and

tolerances were tested so that the deep cut variants used the most

efficient combinations. None of the deep cut variants increase the

accuracy of the algorithm in a systematic way. Therefore, the

merit of each will be based on the efficiency relative to center

cuts, and the number of problems on which it did not converge to

the optimal point. Using these measures of merit, two of the

nonlinesearch and all of the linesearch deep cuts are not

130
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competitive with center cuts. These cuts, super-cuts using local

data, Kelley-cuts using local data, and the searches along d, -g,

r k
and x _ x , degrade algorithm efficiency and sometimes converge to

nonoptimal points.

Five EA variants were tested which examine the feasibility

constraints in different ways. Three variants involve different

ways to examine the entire set of feasibility constraints. One

variant uses an active set strategy to minimize function

evaluations. The final variant here uses the record objective

function value to impose a constraint which can be examined before

examining the feasibility constraints. Determining merit among

these five variants is easy, since accuracy can be eliminated as a

criterion (all five examination strategies attained essentially

identical accuracies). Thus, the only measure of merit remaining

is efficiency. The cyclical strategy was found to be more

efficient than the top-down strategy of [12] or the random

strategy. Both the active set and the record-first strategies had

better efficiencies than the cyclical (feasibility-first) strategy.

Thus, three deep cut and two constraint examination variants

improved the EA efficiency. Table 5.1 compares the accuracies of

these five improved variants on the test problems, and Table 5.2

compares the efficiencies relative to the cyclical, feasibility-

first strategy using center cuts.
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Table 5.1 Summary of Accuracies for the Improved EA Variants

I I Center Super I Kelley I
I problemi Cyclic I(center)I Extend I(center)I Active Record I

Col 1 1 -16.83 -16.50 -16.28 -16.88 -16.10 -16.60
Col 2 -14.36 -15.14 -14.61 -14.11 -14.35 -14.35
Col 3 -15.11 -14.96 -14.97 -14.89 -14.92 -14.98
Col 4 1 -16.58 1 -3.61*1 -16.58 1(-16.58)1 -16.58 1 -16.58 I
Col 8 -14.99 -15.85 -15.85 -14.97 -15.85 -15.85
Dem lb -8.30 -8.93 -8.30 -8.72 -8.87 -9.28
Dem 2 -14.48 -14.40 -14.42 -14.42 -14.53 -14.43
Dem 3 -14.38 -14.41 -14.35 -14.32 -14.41 -14.46
Dem 4a -15.55 -15.49 -15.04 -15.33 -15.81 -15.45
Dem 5 -15.08 -14.74 -14.67 -14.40 -14.63 -14.56
Dem 6 -17.57 -17.52 1 -17.54 I -4.05*1 -17.57 1 -17.50 1
Dom 7 -13.36 -13.42 1 -13.42 I -9.05*1 -12.35 I-13.31 1
Dem 8a -14.64 -15.89 -15.34 -14.66 -14.71 -15.24

Notes:

The measure of accuracy used is the lowest log relative
combined solution error attained.

* denotes those problems which did not converge to x

!S

DS



133

Table 5.2 Summary of Efficiencies for the Improved EA Variants

I -4-4--- --- I--~ --

I I Center Super Kelley I .-
I problemi Cyclic l(center)I Extend I(center)I Active Record i

Col 1 1 1.00 0.83 0.82 0.92 0.71 0.86 1
Col 2 1.00 0.87 0.97 0.93 0.98 0.96 I
Col 3 1.00 1.09 1.06 0.82 0.73 0.98
Col 4 1.00 1.07* 0.99 (0.99) 0.67 0.65
Col 8 1.00 0.87 0.90 1.01 0.63 0.79
Dem lb 1.00 0.93 0.93 0.78 0.97 0.95
Do. 2 1.00 0.91 0.97 1.06 0.85 0.98
Dom 3 1.00 0.99 0.96 0.88 0.83 0.99
Do. 4a 1.00 0.93 0.87 0.80 1.00 1.06
Do. 5 1.00 0.89 0.94 0.86 0.98 0.95
Dom 6 1.00 0.96 0.90 0.29* 0.99 0.98
Do. 7 1.00 0.93 0.90 0.75* 1.04 1.05
Da. 8a 1.00 0.92 0.93 0.83 0.93 1.00

Avg: 1.00 0.93 0.93 0.89 0.87 0.95 I

Notes:

The measure of efficiency used is PSCPU time relative to
PSCPU time used by the cyclical strategy using center cuts.

S

* denotes those problems which did not converge to x

When examining these tables to determine which EA variant to

implement, the first question is whether the problem or subproblem

is known to be convex or linear. If not, perhaps center cuts

should be used in preference to super- and Kelley-cuts. The

remaining discussion assumes that super- and Kelley-cuts have not

been eliminated from consideration.

The five improved variants do not have to be compared against

one another because they are not mutually exclusive to use. It is

_.
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true that either an extended-cut or a super-cut must be chosen when

an optimality cut is desired. Extended cuts might be the first

preference because they have equal efficiency with no accuracy

degradation. Recall that extended-cuts often have an orientation

which would cause a negative depth of cut, and so an alternative

optimality cut must be chosen. We selected center cuts for this

analysis, but super-cuts could be used instead to gain the benefits

of using both improved optimality cuts.

A single EA variant can thus combine all of the five variants

which improve efficiency. In particular, the record-constraint is

examined first. If the record constraint is satisfied, then the

feasibility constraints are checked using an active set strategy.

r k T r
Optimality cuts are extended-cuts if (x - x ) g m+(xr) 0, and

super-cuts using the centerpoint gradient if not. Feasibility

cuts are Kelley-cuts using the centerpoint gradient.

Some of the individual components of this strategy might not

be expected to combine their improvements in an additive manner.

For example, the efficiency gains shown here for both the active

* set strategy and the record-first strategy seem to come from

reducing the feasibility-checking effort of Table 4.3. We note

that on Colville 4, which has no active feasibility constraints,

the active set strategy saves about 33% of the cyclical effort, and

the record-first strategy saves about 35% of the same effort. Thus
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both strategies appear to have saved almost all of the 39% of

effort which the cyclical strategy expended on feasibility

constraint examinations. Colville 8 and Colville 1 were the

problems on which both of these variants had the next best

efficiencies.

On the other hand, some of the individual components of this

proposed strategy may well have a synergistic effect when used

together. For example, we saw what a marked efficiency improvement

super- and extended-cuts achieved with a very low utilization

frequency. The record-first constraint examination strategy

classifies more of the centerpoints as being in G', so more super-

and extended-cuts cuts will be made.

The significance of this is in the efficiency improvement

which is possible in each case. We demonstrated that the active set

strategy achieved almost all of the possible efficiency improvement

that it could, and that its improvements were linear in m /m. On

the other hand, doubling the percentage of iterations on which

deep cuts are made results in squaring the volume reduction

relative to center cuts.

S In addition to suggesting algorithms which combine the five

efficiency-improving variants, there are several other extensions

of the present work which deserve further investigation.



136

First, the success of the active set strategy presented here

suggests that it might be worthwhile to study whether comparable

improvements in efficiency could be obtained with a simpler version

in which every maybe-record point is checked for S-feasibility.

Second, we have treated the constraints in NLP as general

nonlinear constraints. The active set strategy could be slightly

improved if some constraints were linear, since it can be

analytically determined whether a linear constraint is inactive

over Ek. If the functions f. are linear for i = l...m+l (i.e.,
-k1

if NLP is a linear programming problem) then when the active set

has been identified the corresponding system of linear equations
iS

could be solved to find x

Finally, the record-first strategy developed here uses the

record value to impose a constraint on the objective function

value, and tests this constraint before the feasibility

constraints. We used the record value to impose the objective

function constraint since our formulation of NLP assumed that no

other knowledge of f m+(x) is known. On some problems, a

reasonably tight upper bound on f m+(X ) can be predetermined

(perhaps from a physical problem being modeled). If the upper bound

is fu then our record-first strategy could be generalized into

an objective-first strategy where the objective function constraint
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imposed is

f 1 (x) Min (fU ft}

m+

Also, imposing an upper bound on fm+(x) can be used even

when no upper bound is known from the nature of the problem or from

a record value that was found. For example, a branch-and-bound

strategy could be devised to find fm+i (x) and x using a sequence

(fu) of trial upper bounds.J
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Auuendix A. An Adaptive Hybrid of Regula Falsi and Bisection

Let x(a) = xk + ad be the left endpoint of a line segment,

k
with f(x(a)) > 0. Similarly, let x(b) = x + bd be the right

endpoint of the line segment, with f(x(b)) < 0. We want to find X

such that x(X) is an approximation to the zero of the function.

The bisection method uses the approximation

Xb = a + (b -a)/,

while the regula falsi method uses the approximation

= a + f(x(a))(b - a)/(f(x(a)) - f(x(b))).."" r

We use a hybrid of these two, attempting to achieve the faster

convergence of regula falsi on well-behaved functions, while

retaining the faster convergence of the bisection method on less

wel 1-behaved functions.

d

The approximation we use is a convex combination of the two

approximations above

= r + (1

-'.:~~~ ''. -" - i'.- ,.." .'- .... ii,.? .. -b. .. . . .. . - .'
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where a is the robustness parameter. If the robustness parameter

is at its maximum value of 1, then the regula falsi approximation

is used; at the minimum value of 0, the bisection approximation is

used. The initial value of the robustness parameter is an input to

the subroutine; we set it at 1.

The algorithm compares its actual convergence with that of the

bisection method, and uses an adaptation parameter v to control the

value of a. If on an iteration the algorithm reduces the interval

of uncertainty by at least half, the algorithm increases the

robustness parameter toward 1. Conversely, on iterations when the

interval of uncertainty is not halved, C is decreased toward 0.

The new value of a is a convex combination of the present value and

the desired endpoint value. The control algorithm is

1. Initialize a and b.

2. Let e = b - a.

3. Perform an iteration, and update a and b.

4. If (b - a)/ > .5, let c -- cO + (1 -T)o = (1 -Oa.

Otherwise, let a = T1 + (1 - )= c + (1 - T)U.

5. Go to 2.

The adaptation parameter is also an input to the subroutine;

we use a value of 0.5. A further advantage to the hybrid algorithm

is that it also can be used as a simple regula falsi or bisection

algorithm, if the adaptation parameter is set to 0, and the
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robustness parameter is set to 1 or 0 respectively.

K. I



144

Appendix B. Probability Analysis for Drop-check Intervals

Assume that we are starting a new drop-check interval and that

+
the number of constraints in I+ is m . Let us temporarily assume

+
that m ) 1. Each upcoming Phase 1 iteration will increment the

violation count for one constraint in I+. To calculate the minimum

length of the drop-check interval, we model the probability

distribution of violated constraints as a multinomial distribution

with an equal probability that each truly active constraint is

found to be violated on a Phase 1 iteration.

We define success of the drop-check to be when all truly

active constraints in I+  are kept in I+; that is, no active

constraint is dropped from I+ because it had a zero violation count
++

when checked. Under the hypothesis that all m constraints in I

are truly active, we calculate the drop-check interval as the

number of Phase 1 iterations required to achieve at least a 0.99

probability of a successful drop-check. After k = Ak Phase 1

iterations in this drop-check interval, let v be the m +-dimensional

vector of violation counts for the constraints in I+. A drop-check

is successful if and only if all elements of v are positive.

A
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The probability of success is then the ratio of the number of

permutations of v where all m elements are positive, to the number

of permutations of v. That is

v 2 Vm +  (vl)(v21)...(vm+)
Pr (Success) =

(m+)k

where: v. E (1...) for i = ...m1

+

and: v. = k.
1%1 i =1

This probability is more easily calculated in a recursive

manner. Let us define p(k,m+ ) as the above probability of

success. The event of failure for this drop-check can be

partitioned into failure when only one element of v is positive,

failure when exactly two elements of v are positive, and so on up

to failure when exactly (m - 1) elements of v are positive. The

probability that exactly j elements of v are positive is the number

of permutations of v having exactly j positive elements divided by

the number of permutations of v. The number of permutations of v

having exactly j positive elements is the number of ways of
S+

choosing different sets of j positive elements from the m

available, times the number of permutations of j elements where all
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j elements are positive. Recall that p(k,j) is the number of

permutations of j elements where all j elements are positive,

divided by all permutations of j elements. We therefore have

p(k,m+ ) = Pr (Success)

= 1 - Pr (Failure)

+
m -1

= 1 - Pr (Failure with exactly j positive)
j =1

+ (+) k

=1 - j (m )k

j=I

We define p(k,1) = 1 since that single constraint surely has all k

violation counts and thus it can not be dropped erroneously.

Define k(m+) as the least k such that p(k,m ) . 0.99. The

+
results of these recursive calculations for m = 2...50 showed the

++

relationship between m and k(m + ) plotted in Figure B.1. To avoid

having to store a tabulation of the exact results, we approximated

K:

a .. . . . .A . - -



147

the relationship with a quadratic function. The approximation used

+ + 2 +
was k'(m+ ) p (m+) + p2m + p3. Using the EA, we solved the

nonlinear program

50

min [k'(m +) - A
m =2

++

subject to k'(m +) > k(m+ ), m = 2...50

and found the optimal point to be:

Pl = +0.02493343705355995

P2= +7.385572218142679

P3 = -6.869633070032582

The approximating function is also shown in Figure B.1.

The discussion above assumed that m > 1, and did not specify

+

the effect of Phase 2 iterations. If m = 0 then there is no

active set from which to drop constraints, and drop-checks are not

used.

If the proportion of Phase 2 iterations during a drop-interval

is small, we ignore these iterations as not contributing any

information about which constraints are active. However, if a

. sufficiently long interval contains only Phase 2 iterations, the

algorithm should eventually drop all constraints in I as

... a

.o9
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inactive. We therefore perform the drop-check when either the

Phase 1 or the Phase 2 iteration count exceeds k'(m

If m = 1, then the single active constraint is found violated

on every Phase 1 iteration, so a single Phase 1 iteration during

the interval means a successful drop-check. The single constraint

will be dropped only if all k iterations are Phase 2 iterations.

Since k(1) is undefined in the above, we use k = k'(2) if m = 1.

* -. *. * . .. . . . . .
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CBc k and k' vs mn+
0 k(n+)
- =k'(m+)
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Figure B.1 k and k' vs m+
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Appendix C. Analysis for Add-check Intervals

+ + +
Again, let m be the number of constraints in I . If m = m,

then all record points found are true record points, and the

active set strategy does not need to perform add-checks or save

ellipsoid data for possible backtracks. The discussion below

+

considers m +< m.

The initial add-check interval is taken as Ak= 1, meaning

that every maybe-record point is tested to see if it is also

I -feasible. When we feel that I also has constraints that might

be violated, this value is appropriate since all cuts are then
i+

solution-preserving. However, as I grows more stable, we would

like the algorithm to proceed toward a computationally more

efficient interval. There is a tradeoff in the computational

factors involved.

Lengthening Ak+ decreases the effort spent checking I. The

amount of effort saved varies with the number of constraints in I

. I+  +

versus I When m 3, there is no effort associated with

checking I and the add-check interval should not grow. That is,

a multiplicative growth factor of 1 should always be used when

+ +
m M a. When m + 0, an add-check is highest in effort since

checking I requires all m constraint functions to be evaluated.

To minimize this high cost, we would permit the growth factor
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+j

to approach the upper bound of 2 when m = 0.

The other computational effort to consider when lengthening

Ak+  is the penalty incurred performing iterations after a|I

backtrack. The effort required for the EA update formulae is of

2
order n . Foz these reasons, we use a growth factor which is only

permitted to double the add-check interval when n = 1, and

2
decreases toward 1 with n

We set r = m /m and define the growth factor u as

u = r(1) + (1 - r)(1 + n-
2).

This yields the desired values at the endpoints, u = 1 and u = 2.

An adaptive method is used which adjusts intermediate values of u

closer to 1 or 2 as appropriate, to control algorithm behavior.

The mapping uses a control factor z, and produces an adjusted

growth factor w by

w = = 1 + (u - 1 )(z - 1)/(2 - z)

A value z = 1.5 causes w z; z = 1 causes w = 1; and z = 2 is

defined as w = 2 unless u = 1 (where we use w = 1 to ensure no

growth when r = 1).
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The growth factor is adjusted closer to 2 when the algorithm

is stable and performing well, and closer to 1 when the contrary is

true. The control factor z is initially 1.5 to have w = z. If a

drop-check does drop a constraint from I+, then z is allowed to be

no greater than 1.5, since I+ must be changing. If an add-check

causes a backtrack we reduce the control facto- to help avoid this

in the near future. If the algorithm had bypassed checking a

maybe-record point, and an add-check later finds that we still have

(S n G)# 0, then we increase the control factor z since bypassing
oAd

po'n's seems safe.

4- 1
.,4

. 4

* l a a lf a - --
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The specifics of how we use those parameters are:

a) On initialization:

r =0

z =1.5

Ak~ 1

* b) When a ro-check does drop a constraint from I

r =m +I/

z =min(z,1.5)

Ak =1

c) When an add-check finds x ko X-

r =m /m

z =1 + ((z - 1)/2), if this causes a backtrack

Ak =1

d) When an add-check finds x k E X_:

Ak =Ak w

z =2 -((2 -0/)2), if there was a maybe-record point

which we avoided testing

The Ak value is stored as a floating point number to allow

the interval to grow under growth factors less than two. We use

t[Ak1+1 when determining whether or not to test a record point. For

example, if the current interval is 2.6 then every second record

point will be tested.
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Appendix D. Error Versus Effort Curves
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Aunendix D.2 Linesearch Subroutines and Tolerances
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